Newtonov zakon gravitacije

Izvor: Wikipedija
Skoči na: orijentacija, traži
Dva tijela se privlače uzajamno silom koja je proporcionalna (u skladu) umnošku njihovih masa, a obrnuto proporcionalna kvadratu njihove međusobne udaljenosti.
Isaac Newton (1642. – 1728.)
Newtonov zakon gravitacije je pomogao da se pronađe planet Neptun. Usporedba Zemlje i Neptune.
Prema Općoj teoriji relativnosti, planet u svom obilasku oko Sunca opisuje elipsu koja se polako okreće u svojoj ravnini.
Otklon zrake svjetlosti u gravitacijskom polju Sunca se mjeri pri pomrčini Sunca, kad je glavnina snažne Sunčeve svjetlosti zaklonjena. Prvi puta je to mjerenje izvršeno 29. svibnja 1919., čime je bila potvrđena Einsteineva teorija relativnosti.

Newtonov zakon gravitacije ili opći zakon gravitacije iskazuje da se svaka dva tijela privlače uzajamno silom koja je proporcionalna (u skladu) umnošku njihovih masa, a obrnuto proporcionalna kvadratu njihove međusobne udaljenosti:

F = G \frac{m_1 m_2}{r^2}\ ,

gdje je:

  • F - uzajamna sila privlačenja između dva tijela (kg), i vrijedi F = F1 = F2,
  • G - univerzalna gravitacijska konstanta koja otprilike iznosi 6.67428 × 10−11 N m2 kg−2,
  • m1 - masa prvog tijela (kg),
  • m2 - masa drugog tijela (kg), i
  • r - međusobna udaljenost između središta dva tijela (m).

Isaac Newton[uredi VE | uredi]

Prva teorija gravitacije započinje 1687., kada je Isaac Newton objavio svoje glavno dijelo Matematička načela prirodne filozofije (Philosophiae naturalis principia mathematica). Newton temelji svoja razmatranja na osnovu Keplerovih zakona:

Newton je zamišljao da bi se Zemljina sila gravitacije morala protezati do Mjeseca. Ako se računa kolika ta privlačna sila Zemlje mora biti da Mjesec prisili na njegovu (približno) kružnu stazu, izlazi da je privlačna sila obrnuto proporcionalna kvadratu udaljenosti od Zemljina težišta. Prenoseći taj rezultat na sva nebeska tijela, Newton postavlja svoj Newtonov zakon gravitacije. Pri tome se masa nebeskog tijela zamišlja koncentrirana u točki. Newton dokazuje da tijelo sa sferno simetričnim rasporedom mase (a takva su približno sva nebeska tijela) djeluje kao da je sva njegova masa koncentrirana u njegovu središtu. [1]

Iz Općeg zakona gravitacije dobiveni su matematički izrazi za Keplerove zakone, pa tako treći Keplerov zakon za dva planeta točnije glasi:

\frac{a_1^3}{a_2^3}\ = \frac{T_1^2 (M + m_1) }{T_2^2 (M + m_2) }\

gdje su: a1, a2 - velike osi putanja tih planeta, T1, T2 - ophodna vremena tih planeta, a m1, m2 - mase tih planeta, koje su malene prema M - masa Sunca. Ako se mase m1, m2 zanemare prema M, posljednji razlomak je jednak 1, pa izlazi treći Keplerov zakon u izvornom obliku:

\frac{a^3}{T^2}=k

Uzme li se u obzir djelovanje međusobnog privlačenja planeta (račun smetnji ili pertubacija), dobiva se izuzetno točno slaganje s astronomskim opažanjima. Tako je na temelju nepravilnosti u gibanju planeta Urana računom smetnji određeno mjesto novog planeta. Taj su račun nezavisno izvršili Francuz Urban Le Verrier (1811. – 1877.) i Englez John Couch Adams (1819. – 1892.). Na temelju toga našao je Johann Gottfried Galle (1812. –1910.) taj planet 1846., koji je dobio ime Neptun.

Račun smetnji, među ostalima, pokazuje da se eliptična putanja planeta Merkur mora polagano okretati oko Sunca, u istom smjeru u kojem Merkur obilazi Sunce. Taj račun smetnji daje zakretanje za otprilike 532 lučne sekunde u stoljeću, ali opažanja daju zakretanje koje je za 43 lučne sekunde veće. To maleno razilaženje između Newtonove teorije gravitacije i astronomskih opažanja objašnjava tek Einsteinova Opća teorija relativnosti.

Povijest[uredi VE | uredi]

Od prapovijesti čovjeku je poznato djelovanje Zemljine gravitacije. Predmet koji čovjek drži na dlanu, gura ruku prema dolje. Ako se predmet ispusti iz ruke, on pada sve većom brzinom prema tlu. Starogrčki filozofi tu silu gravitacije nisu dovodili u vezu sa nebeskim tijelima. Aristotel (384. pr. Kr. - 322. pr. Kr.) je smatrao da zvijezde imaju svoje prirodno gibanje. Na Zemlji predmeti padajući traže svoje prirodno mjesto, a da bi se tijelo gibalo stalnom brzinom, treba neka stalna sila.

Tek je Galileo Galilei (1564. – 1642.) u svome djelu Razgovori i matematički dokazi o dvjema novim naukama u vezi s mehanikom (tal. Discorsi e dimostrazioni matematiche intorno due nuove scienze attenenti alla meccanica, 1638.) dao zakon tromosti ili inercije i pokazao da Zemljina gravitacija uzrokuje stalno (konstantno) ubrzanje tijela koja padaju, neovisno od njihove mase. S obzirom na objašnjenje gibanja planeta, vladala je geocentrična teorija koja se služila zamisli da nebeske sfere se okreću oko nekih osi (Pitagora (oko 582. - oko 496. pr. Kr.) i Aristotel) i epiciklima (Klaudije Ptolemej (iza 83. – 161. n.e.)), svodeći na taj način sva gibanja nebeskih tijela na gibanja po kružnici.

Geocentrička teorija se održala sve do Nikole Kopernika (1473. - 1543.), koji je izgradio heliocentrični sustav, za koje je Galilej postavio uvjerljive činjenice. Već je Aristarh sa Samosa (310. pr. Kr. - oko 230. pr. Kr.) postavio teoriju o heliocentričnom sustavu, no ona nije bila prihvaćena 18 stoljeća. Da je gibanje planeta oko Sunca uvjetovano privlačenjem Sunca, naslućivao je već Johannes Kepler (1571. - 1630.), no on je mislio da bi ta sila trebala biti obrnuto proporcionalna s udaljenošću. Da je gravitacijska sila obrnuto proporcionalna s kvadratom udaljenosti, izreklo je više znanstvenika prije Newtona, posebno je Robert Hooke (1635. - 1703.) u jednom pismu prestavio Newtonu i prije nego što je 1687. objavljen Newtonov zakon gravitacije. Tek je Newton to dokazao i utvrdio istovjetnost sa Zemljinom gravitacijom.

Einsteinova teorija gravitacije[uredi VE | uredi]

Prema Einsteinevoj Posebnoj teoriji relativnosti nijedno se djelovanje, odnosno signal, ne može prenositi brže od brzine svjetlosti, pa je stoga Newtonova teorija gravitacije u neskladu sa posebnom teorijom relativnosti. Prema Newtonovoj teoriji, planet u svom obilasku oko Sunca opisuje elipsu koja miruje u koordinatnom sustavu Sunca usmjerenom prema dalekim svemirskim objektima. Prema Općoj teoriji relativnosti, ta se elipsa polako okreće u svojoj ravnini. Točnije rečeno, planet zapravo opisuje krivulju poput rozete. To se očituje tako da se Suncu najbliža točka staze ili perihel, pomalo pomiče. Taj je pomak to veći što je planet bliži Suncu, i to se točnije može odrediti što je veći eskcentricitet elipse (omjer udaljenosti žarišta elipse od središta prema velikoj poluosi). Od Sunčevih planeta Merkur je najbliži Suncu i ima najveći iznos eskcentriciteta elipse 0.2056, za Veneru je 0.0068 a za Zemlju 0.0167. Stoga je pomicanje Merkurova perihela najveće i može se najtočnije odrediti. Prema Općoj teoriji relativnosti treba da iznosi 575 lučne sekunde u stoljeću (to je maleni kut pod kojim se vidi kovani novčić na udaljenosti od otprilike 100 metara).

Prema klasičnoj Newtonovoj teoriji, kut pomicanja Merkurova perihela bi bio 0 (nula) kada bi Merkur bio jedini planet. No, zbog smetnji drugih planeta, najviše Venere, Zemlje i Jupitera, trebalo bi i prema Newtonovoj teoriji nastati pomicanje Merkurova perihela, otprilike za 532 lučne sekunde u stoljeću. No, opažanja daju više, pa vrijednost razilaženja opažanja i klasičnog računa, uzevši u obzir sve potrebne korekcije, iznosi 43.11 ± 0.45", što se izvrsno slaže sa spomenutim iznosom koji zahtijeva Einstinova teorija. Pri tom se smetnje drugih planeta računaju prema Newtonovoj teoriji, jer bi njihova relativistička korekcija bila reda veličine 0.0001 lučnih sekundi u stoljeću, što dakako izmiče mogućnosti opažanja. Za Veneru i Zemlju rezultati opažanja se dobro slažu s Einstinovom teorijom, dok je relativistički pomak perihela za ostale planete premalen, a da bi se dao pouzdano izmjeriti.

Otklon zrake svjetlosti u gravitacijskom polju Sunca[uredi VE | uredi]

Prema Einsteinevoj teoriji gravitacije, Sunce djeluje na fotone svojom privlačnom silom gravitacije kao i na svaku drugu česticu. Prolazi li svjetlost s neke zvijezde kraj Sunca, ona će se otkloniti za neki maleni kut. Ako se promatra zvijezda koja je na nebu blizu Sunca, oko će je vidjeti u produljenju otklonjene zrake svjetlosti i zato će izgledati kao da je zvijezda nešto odmaknuta od Sunca. Ako zraka prolazi sasvim blizu Sunca, kut otklona može biti do 1.75 lučnih sekundi. Otklon se mjeri pri pomrčini Sunca, kad je glavnina snažne Sunčeve svjetlosti zaklonjena. Prvi puta je to mjerenje izvršeno 29. svibnja 1919., čime je bila potvrđena Einsteineva teorija relativnosti.

Izvori[uredi VE | uredi]

  1. "Tehnička enciklopedija", glavni urednik Hrvoje Požar, Grafički zavod Hrvatske, 1987.