Skalarni umnožak

Izvor: Wikipedija
Skoči na: orijentacija, traži
Scalarproduct.gif

Skalarni umnožak dva vektora je definiran kao umnožak iznosa (modula, duljine, intenziteta) prvog i drugog vektora i kosinusa kuta između njih. Dobiveni je rezultat skalar.

\vec a\cdot\vec b = \vec b\cdot\vec a = \left |\vec a\right |\left |\vec b\right |\cos\phi

Skalarni umnožak vektora sa samim sobom daje kvadrat njegovog iznosa, jer je u tom slučaju kosinus jednak 1. Skalarni umnožak vektora koji su pod pravim kutom (90°) jednak je 0, jer je kosinus pravog kuta 0.

Skalarni umnožak je komutativan, distributivan i linearan.

Definicija i primjer[uredi VE | uredi]

Definicija skalarnog umnoška vektora a = [a1, a2, … , an] i vektora b = [b1, b2, … , bn] :

\mathbf{a}\cdot \mathbf{b} = \sum_{i=1}^n a_ib_i = a_1b_1 + a_2b_2 + \cdots + a_nb_n
  • gdje Σ označuje zbrajanje po komponentama.

Primjer skalarnog množenja na trodimenzionalnom vektoru [1, 3, −5] i [4, −2, −1]:

\begin{bmatrix}1&3&-5\end{bmatrix} \cdot \begin{bmatrix}4&-2&-1\end{bmatrix} = (1)(4) + (3)(-2) + (-5)(-1) = 3.

Geometrijska interpretacija[uredi VE | uredi]

S obzirom da znamo da je skalarni umnožak i umnožak sa kutom između dva vektora, možemo inverznom operacijom izračunati i kut.

 \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos \theta \, \Longrightarrow \theta =  \arccos \left( \frac {\bold{a}\cdot\bold{b}} {|\bold{a}||\bold{b}|}\right).

Vidjeti također[uredi VE | uredi]