Polinom

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretraživanje

Polinom je matematička funkcija s jednom ili više varijabla koja se može zapisati kao linearna kombinacija umnožaka njihovih potencija, odnosno kao zbroj monoma sastavljenih od umnožaka konstante i kombinacija potencija svake od varijabla. Polinom n-tog stupnja u jednoj varijabli je funkcija[1]

u kojoj su koeficijenti je , ,..., konstante i . Broj zove se slobodni koeficijent, a broj vodeći koeficijent.

Polinomi se skraćeno zapisuju pomoću simbola za zbrajanje,

.

Ponekad se polinomom zove sam polinomni izraz sa zbrojem raznih potencija neke veličine ili izraza, pa se pripadna funkcija navodi kao polinomna funkcija.

Ako je polinom jednak nuli za sve vrijednosti svojih varijabla nazivamo ga nul-polinom[1] i za nj ne definiramo stupanj (ili zbog nekih formalnih razloga uzimamo da je ili , ovisno o autoru).

Polinomi imaju ključnu ulogu u proučavanju algebarskih brojeva te su česti u drugim granama znanosti poput fizike i računarstva.

Monomi, binomi, trinomi, itd.[uredi | uredi kôd]

Pribrojnici u polinomu nazivaju se monomi; oni su i sami polinomi s jednim članom. Monom je umnožak konstante i bilo koje kombinacije potencija varijabla. Tako su, na primjer

,  ,  ,  

monomi u varijablama , i .

Polinom koji u temeljnom obliku ima samo dva člana naziva se binom. Polinom s tri člana je trinom. Tako je npr. kvadrat binoma jednak trinomu u dvije varijable:

Računske operacije s polinomima[uredi | uredi kôd]

Dva polinoma možemo zbrajati, oduzimati, množiti i dijeliti. Zbrajanje i množenje je komutativno te vrijede uobičajena algebarska pravila. Rezultat dijeljenja dva polinoma nije uvijek polinom: očigledan primjer je dijeljenje polinoma -tog stupnja polinomom -tog stupnja kada je .

Uočimo da oduzeti dva polinoma možemo tako da polinom koji je u funkciji umanjitelja pomnožimo s te ga zbrojimo s polinomom umanjenikom.

Primjeri[uredi | uredi kôd]

Uzmimo i .

Njihovi zbroj i umnožak su:

,
.

Opišimo kako algoritamski podijeliti ova dva polinoma. Ovdje je, radi jednostavnosti, rezultat dijeljenja polinom. Želimo izračunati

Ta jednadžba ekvivalentna je s Prvi član polinoma jednak je jer množenjem s mora dati član s jediničnim koeficijentom najveće potencije 2:

Ostatak (...) je neki polinom pa u prvom koraku imamo

.

Dobivamo čime je problem dijeljenja sveden na dijeljenje polinoma stupnja nižeg za 1.

U drugom koraku rješavamo .

može jedino biti polinom stupnja 0 jer množeći ne smije dati potencije veće od 1: .

Ostatak (...) može biti samo nulpolinom, tj. 0. Mogli smo uočiti da je .

Rješenje je , odnosno .

Uporaba polinoma[uredi | uredi kôd]

Zbog jednostavnosti računanja s polinomima, posebno njihovog strojnog izvrjednjavanja, vrijedosti mnogih drugih funkcija često se aproksimiraju polinomom određenog stupnja na određenom intervalu. Ako je vrijednost funkcije poznata u konačno mnogo točaka, vrijednosti između točaka mogu se procijeniti interpolacijom iz polinoma koji u tim točkama daje egzaktne vrijednosti[2] ili regresijom uz pomoć polinoma po volji izabranog stupnja koji po svim poznatim točkama daje najmanju pogrešku.

Nultočke polinoma[uredi | uredi kôd]

U primjeni, kao i u teoriji, često je potrebno znati u kojim točkama polinomi poprimaju vrijednost nula. Te se točke nazivaju nultočkama ili korijenima polinoma. Ako je nultočka polinoma , vrijedi . Prema Bézoutovom poučku za polinome, tada dijeli .[1] Iz ovog poučka i osnovnog teorema algebre, koji kaže da svaki polinom stupnja većeg od nule ima nultočku u skupu kompleksnih brojeva, slijedi da svaki polinom n-tog stupnja u jednoj varijabli ima točno n nultočaka u skupu kompleksnih brojeva, s tim da pritom neke nultočke mogu biti višestruke kratnosti, odnosno da za neke nultočke može i dijeliti , gdje se najveći takav naziva kratnošću nultočke. Vrijedi i sljedeće: ako su ,, ..., kompleksne nultočke polinoma s vodećim koeficijentom , on se može na jedinstven način zapisati kao umnožak n polinoma prvoga stupnja,[1]

Izvori[uredi | uredi kôd]

  1. 1,0 1,1 1,2 1,3 Zvonimir Bujanović; Boris Muha (2018). Elementarna matematika I (PDF). Zagreb: Prirodoslovno-matematički fakultet
  2. Pavković, Boris (1990). Polinomi, 4. izd. Zagreb: Školska knjiga ISBN 86-03-99890-6