Prijeđi na sadržaj

Datoteka:Newton versus Schwarzschild trajectories.gif

Stranica ne postoji na drugim jezicima.
Izvor: Wikipedija

Newton_versus_Schwarzschild_trajectories.gif(800 × 526 piksela, veličina datoteke: 2,17 MB, MIME tip: image/gif, animacija se ponavlja, 500 okvira, 15 s)

Napomena: Zbog tehničkih ograničenja minijature GIF slika visoke rezolucije poput ove neće biti animirane.


Logo Wikimedijinog spremnika Ova je datoteka sa Zajedničkog poslužitelja i mogu je rabiti drugi projekti. Opis s njezine stranice s opisom datoteke prikazan je ispod.

Sažetak

Opis
English: Comparison of a testparticle's trajectory in Newtonian and Schwarzschild spacetime in the strong gravitational field (r0=10rs=20GM/c²). The initial velocity in both cases is 126% of the circular orbital velocity. φ0 is the launching angle (0° is a horizontal shot, and 90° a radially upward shot). Since the metric is spherically symmetric the frame of reference can be rotated so that Φ is constant and the motion of the test-particle is confined to the r,θ-plane (or vice versa).
Datum
Izvor Vlastito djelo postavljača - Mathematica Code
Autor Yukterez (Simon Tyran, Vienna)
Ostale inačice Kerr orbit, a=0.9

Equations of motion

Newton

In spherical coordinates and natural units of , where lengths are measured in and times in , the motion of a testparticle in the presence of a dominant mass is defined by

The initial conditions are

The overdot stands for the time-derivative. is the angular coordinate, the local elevation angle of the test particle, and it's velocity.

and , where the kinetic and potential component (all in units of ) give the total energy , and the angular momentum, which is given by (in units of ) where is the transverse and the radial velocity component, are conserved quantities.

Schwarzschild

The equations of motion [1] in Schwarzschild-coordinates are

which is except for the term identical with Newton, although the radial coordinate has a different meaning (see farther below). The time dilation is

The coordinates are differentiated by the test particle's proper time , while is the coordinate time of the bookkeeper at infinity. So the total coordinate time ellapsed between the proper time interval

is

The local velocity (relative to the main mass) and the coordinate celerity are related by

for the input and for the output of the transverse and

or the other way around for the radial component of motion.

The shapiro-delayed velocity in the bookeeper's frame of reference is

and

The initial conditions in terms of the local physical velocity are therefore

The horizontal and vertical components differ by a factor of

because additional to the gravitational time dilation there is also a radial length contraction of the same factor, which means that the physical distance between

and is not but

due to the fact that space around a mass is not euclidean, and a shell of a given diameter contains more volume when a central mass is present than in the absence of a such.

The angular momentum

in units of and the total energy as the sum of rest-, kinetic- and potential energy

in units of , where is the test particle's restmass, are the constants of motion. The components of the total energy are

for the kinetic plus for the potential energy plus , the test particle's invariant rest mass.

The equations of motion in terms of and are

or, differentiated by the coordinate time

with

where in contrast to the overdot, which stands for , the overbar denotes .

For massless particles like photons in the formula for and is replaced with and the in the equations of motion set to , with as Planck's constant and for the photon's frequency.

Licencija

Ja, nositelj autorskog prava za ovo djelo, ovime ga objavljujem pod sljedećom licencijom:
w:hr:Creative Commons
imenovanje autora dijeli pod istim uvjetima
Slobodno smijete:
  • dijeliti – umnožavati, distribuirati i javnosti priopćavati djelo
  • remiksirati – prerađivati djelo
Pod sljedećim uvjetima:
  • imenovanje autora – Morate pripisati odgovarajuće autorske zasluge, dati poveznicu na licenciju, te naznačiti jesu li načinjene promjene autorskog djela. Prethodno navedeno možete učiniti na svaki razuman način, ali ne na način koji bi sugerirao da Vi ili Vaše korištenje licencorova djela ima izravno licencorovo odobrenje.
  • dijeli pod istim uvjetima – Ako ovo djelo izmijenite, preoblikujete ili stvarate na osnovu tog materijala, svoje doprinose morate distribuirati pod istom ili kompatibilnom licencijom kao što je i licencija originala.

References

  1. Cole Miller for the Department of Astronomy, University of Maryland: ASTR 498, High Energy Astrophysics

Usage in Wikipedia Articles

en.wikipedia.org

de.wikipedia.org

ru.wikipedia.org

es.wikipedia.org

zh.wikipedia.org

Opisi

Dodajte kratko objašnjenje što predstavlja ova datoteka
orbit aroud a central mass, comparison Newton vs Einstein

Predmeti prikazani u ovoj datoteci

motiv

Određene vrijednosti bez stavke na projektu Wikipodatci

21. svibnja 2016

image/gif

Povijest datoteke

Kliknite na datum/vrijeme kako biste vidjeli datoteku kakva je tada bila.

Datum/VrijemeMinijaturaDimenzijeSuradnikKomentar
sadašnja20:47, 30. rujna 2021.Minijatura za inačicu od 20:47, 30. rujna 2021.800 × 526 (2,17 MB)Yukterezrevert vandalism
17:03, 14. ožujka 2020.Minijatura za inačicu od 17:03, 14. ožujka 2020.777 × 514 (7,97 MB)Bürgerentscheidframes reduced and slightly resized to fit 100 MP limit
21:36, 11. srpnja 2018.Minijatura za inačicu od 21:36, 11. srpnja 2018.800 × 526 (2,17 MB)Yukterezchoosing dt/dτ instead of dτ/dt for the time dilation factor to fit existing conventions
10:31, 13. veljače 2017.Minijatura za inačicu od 10:31, 13. veljače 2017.800 × 526 (2,17 MB)Yukterezreduced filesize by 1MB by reducing the colors
10:15, 13. veljače 2017.Minijatura za inačicu od 10:15, 13. veljače 2017.800 × 526 (3,1 MB)YukterezUser created page with UploadWizard

Nijedna stranica ne rabi ovu datoteku.

Globalna uporaba datoteke

Sljedeći wikiji rabe ovu datoteku:

Metapodatci