Wikipedija:Formule

Izvor: Wikipedija
Skoči na: orijentacija, traži
Pomoć:SadržajPomoć:Sadržaj
Pomoć:Sadržaj

Matematičke (i druge) formule na Wikipediji se pišu pomoću kôda preuzetog iz uređivačkog programa TeX (vidi: LaTeX). Taj se kôd kod prikazivanja stranice pretvara u HTML kôd (koji se onda prikazuje znak po znak) ili u sliku ekstenzije PNG, ovisno o tome kako je namješteno u postavkama.

Sintaksa[uredi VE | uredi]

Kôd se upisuje unutar <math> ... </math>, što je dostupno i na traci s alatima (gumb \sqrt{n}). Slično kao i u HTML-u, višak razmaka i prelazak u novi red se ignoriraju. Wikipedijini alati (npr. podebljan/kurzivni tekst, predlošci, tablice, potpis, određivanje podnaslova itd.) ne rade unutar kôda za matematičke formule.


Prikazivanje[uredi VE | uredi]

Kad se formula prikazuje u PNG formatu, dobije se crn tekst na bijeloj pozadini (ne prozirnoj). To ne ovisi o pregledniku. Veličina i oblik teksta se razlikuje od normalnog teksta (onog izvan kôda za matematičke formule), a problem je i vertikalno poravnavanje.

Ako želite da se formula prikaže u PNG formatu iako je dovoljno jednostavna da se može prikazati i u HTML formatu, na kraj formule dodajte \!,


Razlike između HTML i TeX kôda[uredi VE | uredi]

Nekad je jednostavnije koristiti HTML kôd, ali on često nije dovoljno dobar, kao što je prikazano u sljedećoj tablici:

TeX kôd prikaz u PNG formatu HTML kôd prikaz kao HTML
<math>\alpha\,</math> \alpha\, &alpha; α
<math>\sqrt{2}</math> \sqrt{2} &radic;2 √2
<math>\sqrt{1-e^2}</math> \sqrt{1-e^2} &radic;(1&minus;''e''&sup2;) √(1−e²)

Za posebne znakove, eksponente i indekse, vidi Wikipedija:Kako uređivati stranicu#Vrste slova i pisanja.

Zašto HTML[uredi VE | uredi]

  • Formule pisane unutar teksta uvijek su pravilno vertikalno poravnane.
  • Uvijek su iste veličine i oblika teksta i boje pozadine kao i ostatak teksta.
  • Stranica se brže učitava.

Zašto TeX[uredi VE | uredi]

  • Kôd je jednostavnije pisati, i estetski više zadovoljava.
  • TeX kôd se može pretvoriti u HTML pa se kod jednostavnih formula mogu iskoristiti sve pogodnosti HTML-a.
  • Može se pretvoriti u MathML i koristiti u preglednicima koji ga podržavaju. (vidi: MathML (engl.) )
  • Nema razlike u prikazu kod različitih preglednika ili različitih verzija HTML-a.


Funkcije, simboli, posebni znakovi[uredi VE | uredi]

Naglasci/dijakritici
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!
\check{a} \bar{a} \ddot{a} \dot{a} \check{a} \bar{a} \ddot{a} \dot{a}\,\!
Standardne funkcije
\sin a \cos b \tan c \sin a \cos b \tan c\,\!
\sec d \csc e \cot f \sec d \csc e \cot f\,\!
\arcsin h \arccos i \arctan j \arcsin h \arccos i \arctan j\,\!
\sinh k \cosh l \tanh m \coth n \sinh k \cosh l \tanh m \coth n\,\!
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!
\lim u \limsup v \liminf w \min x \max y \lim u \limsup v \liminf w \min x \max y\,\!
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!
Modularna aritmetika
s_k \equiv 0 \pmod{m} a \bmod b s_k \equiv 0 \pmod{m} a \bmod b\,\!
Derivacije
\nabla \partial x dx \dot x \ddot y \nabla \partial x dx \dot x \ddot y\,\!
Skupovi
\forall \exists \empty \emptyset \varnothing \forall \exists \empty \emptyset \varnothing\,\!
\in \ni \not \in \notin \subset \subseteq \supset \supseteq \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!
Operatori
+ \oplus \bigoplus \pm \mp - + \oplus \bigoplus \pm \mp - \,\!
\times \otimes \bigotimes \cdot \circ \bullet \bigodot \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!
\star * / \div \frac{1}{2} \star * / \div \frac{1}{2}\,\!
Logika
\land \wedge \bigwedge \bar{q} \to p \land \wedge \bigwedge \bar{q} \to p\,\!
\lor \vee \bigvee \lnot \neg q \And \lor \vee \bigvee \lnot \neg q \And\,\!
Korijeni
\sqrt{2} \sqrt[n]{x} \sqrt{2} \sqrt[n]{x}\,\!
Relacije
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} \sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!
Geometrija
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!
Strelice
\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow \curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!
\nLeftrightarrow \longleftrightarrow \nLeftrightarrow \longleftrightarrow\,\!
Posebno
\eth \S \P \% \dagger \ddagger \ldots \cdots \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!
\smile \frown \wr \triangleleft \triangleright \infty \bot \top \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit \ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!
Nesortirano
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!
\dashv \asymp \doteq \parallel \dashv \asymp \doteq \parallel\,\!

Eksponenti, indeksi, integrali[uredi VE | uredi]

Funkcija Kôd Izgled
HTML PNG
Eksponent a^2 a^2 a^2 \,\!
Indeks a_2 a_2 a_2 \,\!
Grupiranje a^{2+2} a^{2+2} a^{2+2}\,\!
a_{i,j} a_{i,j} a_{i,j}\,\!
Kombinacija x_2^3 x_2^3
Prethodeći i/ili dodani eksponenti i indeksi \sideset{_1^2}{_3^4}\prod_a^b \sideset{_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4 {}_1^2\!\Omega_3^4
"Povrh" \overset{\alpha}{\omega} \overset{\alpha}{\omega}
\underset{\alpha}{\omega} \underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}} \overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega} \stackrel{\alpha}{\omega}
Derivacije (samo u PNG-u) <code>x', y'', f', f''\!</code>   x', y'', f', f''\!
Derivacije (kurzivno f nekad preklapa apostrofe u HTML-u) <code>x', y'', f', f''</code> x', y'', f', f'' x', y'', f', f''\!
Točke \dot{x}, \ddot{x} \dot{x}, \ddot{x}
Potcrtano, "potez", vektori \hat a \ \bar b \ \vec c \hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l} \overline{g h i} \ \underline{j k l}
Strelice A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C  A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
Vitičaste zagrade gore \overbrace{ 1+2+\cdots+100 }^{5050} \overbrace{ 1+2+\cdots+100 }^{5050}
Vitičaste zagrade dolje \underbrace{ a+b+\cdots+z }_{26} \underbrace{ a+b+\cdots+z }_{26}
Suma \sum_{k=1}^N k^2 \sum_{k=1}^N k^2
Suma (drugi oblik) \textstyle \sum_{k=1}^N k^2 \textstyle \sum_{k=1}^N k^2
Produkt \prod_{i=1}^N x_i \prod_{i=1}^N x_i
Produkt (drugi oblik) \textstyle \prod_{i=1}^N x_i \textstyle \prod_{i=1}^N x_i
Koprodukt \coprod_{i=1}^N x_i \coprod_{i=1}^N x_i
Koprodukt (drugi oblik) \textstyle \coprod_{i=1}^N x_i \textstyle \coprod_{i=1}^N x_i
Limes \lim_{n \to \infty}x_n \lim_{n \to \infty}x_n
Limes (drugi oblik) \textstyle \lim_{n \to \infty}x_n \textstyle \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
Integral (drugi oblik) \textstyle \int_{-N}^{N} e^x\, dx \textstyle \int_{-N}^{N} e^x\, dx
Dvostruki integral \iint_{D}^{W} \, dx\,dy \iint_{D}^{W} \, dx\,dy
Trostruki integral \iiint_{E}^{V} \, dx\,dy\,dz \iiint_{E}^{V} \, dx\,dy\,dz
Četverostruki integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt \iiiint_{F}^{U} \, dx\,dy\,dz\,dt
Path integral \oint_{C} x^3\, dx + 4y^2\, dy \oint_{C} x^3\, dx + 4y^2\, dy
Presjek \bigcap_1^{n} p \bigcap_1^{n} p
Unija \bigcup_1^{k} p \bigcup_1^{k} p

Razlomci, matrice, rad u više redova[uredi VE | uredi]

Operacija Kôd Izgled
Razlomci \frac{2}{4}=0.5 \frac{2}{4}=0.5
Mali razlomci \tfrac{2}{4} = 0.5 \tfrac{2}{4} = 0.5
Veliki (normalni) razlomci \dfrac{2}{4} = 0.5 \dfrac{2}{4} = 0.5
Veliki (ugniježđeni) razlomci \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
"Povrh" \binom{n}{k} \binom{n}{k}
Mali "Povrh" \tbinom{n}{k} \tbinom{n}{k}
Veliki (normalni) "Povrh" \dbinom{n}{k} \dbinom{n}{k}
Matrice
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
\begin{matrix} x & y \\ z & v
\end{matrix}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
\begin{vmatrix} x & y \\ z & v
\end{vmatrix}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
\begin{pmatrix} x & y \\ z & v
\end{pmatrix}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)

\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
Slučajevi
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n) = 
\begin{cases}
  n/2,  & \mbox{if }n\mbox{ is even} \\ 
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
Jednadžbe u više redova
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}

\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
Jednadžbe u više redova ({lcr} definira broj i poravnanje stupaca - l=lijevo(left), c=sredina(center), r=desno(right). Dakle, prvi stupac će biti poravnat lijevo, drugi u sredinu, treći desno. (ne koristiti ako nije prijeko potrebno))
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
Jednadžbe u više redova (dodatno objašnjenje)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
Lomljenje dugačke formule da prijeđe u novi red ako je potrebno

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x) \,\!= \sum_{n=0}^\infty a_n x^n = a_0 +a_1x+a_2x^2+\cdots

Slučajevi
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}

Vrste slova/fonta[uredi VE | uredi]

Grčki alfabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!
\Eta \Theta \Iota \Kappa \Lambda \Mu \Eta \Theta \Iota \Kappa \Lambda \Mu \,\!
\Nu \Xi \Pi \Rho \Sigma \Tau \Nu \Xi \Pi \Rho \Sigma \Tau\,\!
\Upsilon \Phi \Chi \Psi \Omega \Upsilon \Phi \Chi \Psi \Omega \,\!
\alpha \beta \gamma \delta \epsilon \zeta \alpha \beta \gamma \delta \epsilon \zeta \,\!
\eta \theta \iota \kappa \lambda \mu \eta \theta \iota \kappa \lambda \mu \,\!
\nu \xi \pi \rho \sigma \tau \nu \xi \pi \rho \sigma \tau \,\!
\upsilon \phi \chi \psi \omega \upsilon \phi \chi \psi \omega \,\!
\varepsilon \digamma \vartheta \varkappa \varepsilon \digamma \vartheta \varkappa \,\!
\varpi \varrho \varsigma \varphi \varpi \varrho \varsigma \varphi\,\!
Skupovi
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!
Podebljano (abeceda)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!
Podebljano (alfabet)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!
Kurziv
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!
Roman font
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!
Fraktur font
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!
"Rukopis"
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!
Hebrejski
\aleph \beth \gimel \daleth \aleph \beth \gimel \daleth\,\!
Funkcija Kôd Izgled
sprečavanje automatskog kurziva kod slova \mbox{abc} \mbox{abc} \mbox{abc} \,\!
pomiješano (loše) \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \,\!
pomiješano (dobro) \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \,\!
mixed italics (pouzdanije: "~" daje razmak koji se neće
prekidati na kraju reda, a "\ " samo daje razmak)
\mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \,\!

Zagrade i slično[uredi VE | uredi]

Ne koristite unutar matematičkod kôda znakove "(" i ")" ako želite u zagradu staviti razlomke ili nešto "visoko":

Funkcija Kôd Izgled
Loše ( \frac{1}{2} ) ( \frac{1}{2} )
Dobro \left ( \frac{1}{2} \right ) \left ( \frac{1}{2} \right )
Funkcija Kôd Izgled
Oble zagrade \left ( \frac{a}{b} \right ) \left ( \frac{a}{b} \right )
Uglate zagrade \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Vitičaste zagrade \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
"Špičaste" zagrade \left \langle \frac{a}{b} \right \rangle \left \langle \frac{a}{b} \right \rangle
Apsolutna vrijednost i dvostruke okomite crte \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Funkcije zaokruživanja \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
Kose crte \left / \frac{a}{b} \right \backslash \left / \frac{a}{b} \right \backslash
Strelice \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow

Različite se vrste zagrada mogu
miješati dok je god broj oznaka
\left i \right jednak.

\left [ 0,1 \right )
\left \langle \psi \right |

\left [ 0,1 \right )
\left \langle \psi \right |

Ako ne želite zagradu, poslije
\left ili \right dodajte točku.
\left . \frac{A}{B} \right \} \to X \left . \frac{A}{B} \right \} \to X
Veličina zagrada \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

Razmaci[uredi VE | uredi]

Razmaci se obično ne moraju sređivati jer su pravilno dodani automatski, no, nekad je potrebno ručno ih podesiti.

Funkcija Kôd Izgled
dva četverostruka razmaka a \qquad b a \qquad b
četverostruki razmak a \quad b a \quad b
običan razmak a\ b a\ b
običan razmak bez pretvorbe u PNG a \mbox{ } b a \mbox{ } b
velik razmak a\;b a\;b
srednji razmak a\>b [nije podržano]
malen razmak a\,b a\,b
bez razmaka ab ab\,
malen "negativan razmak" a\!b a\!b


Boje[uredi VE | uredi]

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

Sve boje koje podržava LaTeX pogledajte ovdje.

Vanjska poveznica[uredi VE | uredi]