Aksiom izbora
Prijeđi na navigaciju
Prijeđi na pretraživanje
Ovo je glavno značenje pojma Aksiom izbora. Za druga značenja pogledajte Aksiom izbora (razdvojba).

Aksiom izbora je aksiom iz teorije skupova.
Imamo I, proizvoljan neprazan skup i vrijedi
neprazna familija u parovima disjunktnih nepraznih skupova.
U tom slučaju ima skup B takve osobine da je
jednočlan skup za sve .
Drugim riječima, svakom nepraznom skupu je bar jedna jedna funkcija čiji su argumenti neprazni podskupovi tog skupa, a slike su elementi argumenata.[1]
Taj skup B nazivamo izborni skup za familiju [2]
Neke od posljedica aksioma izbora su čudne, kao što je poučak Banach-Tarskog.[3]
Analizom Cantorovih radova nameće se zaključak da skoro svi poučci koje je dobio daju se izvesti iz triju aksioma: aksioma rasprostranjenosti (ekstenzionalnosti), aksioma tj. načela komprehenzije i aksioma izbora.[1]
Izvori[uredi | uredi kôd]
- ↑ a b Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 24. srpnja 2019. Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 3.
- ↑ Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 4. kolovoza 2019. Ivan Krijan: Skupovi, Zagreb: Sveučilište u Zagrebu, str. 1. (pristupljeno 6. kolovoza 2019.)
- ↑ Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 8. listopada 2019. Mladen Vuković: Neki osnovni pojmovi teorije skupova, 2004. str. 6 (pristupljeno 20. studenoga 2019.)