Peterokut

Izvor: Wikipedija
Skoči na: orijentacija, traži
Pravilni peterokut

Peterokut je svaki geometrijski lik koji se sastoji od pet kuteva. Zbroj kutova peterokuta iznosi 540°.

Pravilni peterokut[uredi VE | uredi]

Kod pravilnog peterokuta sve stranice iste su duljine, svaki kut peterokuta ima 108° (5x108 = 540)

Površina pravilnog peterokuta stranice t računa se po sljedećoj formuli:

P = \frac{{t^2 \sqrt {25 + 10\sqrt 5 } }}{4} = \frac{5t^2 \tan(54^\circ)}{4} \approx 1.720477401 t^2.

Konstrukcija pravilnog peterokuta[uredi VE | uredi]

Konstrukcija pravilnog peterokuta upisanog u krug uči se u osnovnoj školi pomoću šestara.

Konstrukcija pravilnog peterokuta, vrhovi na kružnici
Animirani GIF postupka konstrukcije pravilnog peterokuta upisanog u krug


P math.png Nedovršeni članak Peterokut koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.