Matematički dokaz

Izvor: Wikipedija
Skoči na: orijentacija, traži
Vizualni dokaz Pitagorina teorema

Matematički dokaz je logičko-matematički postupak kojim se s pomoću aksioma i ranije dokazanih teorema potvrđuje ili opovrgava neki iskaz ili teorem. Zaključivanje je najčešće deduktivno ili induktivno.

Metode dokazivanja[uredi VE | uredi]

1. Izravni dokaz.

Na primjer, neka je iskaz: zbroj dva parna broja je uvijek paran broj.
Pretpostavimo da su x i y parni brojevi. Budući da su parni, moguće ih je napisati kao x = 2a i y = 2b gdje su a i b brojevi iz skupa cijelih brojeva. Tada se može vidjeti da je zbroj x + y = 2a + 2b = 2(a + b) jasno djeljiv s dva, tj. paran.

2. Matematička indukcija

Ako tvrdnja vrijedi za broj 1, i ako iz pretpostavke da tvrdnja vrijedi za neki prirodni broj n slijedi da tvrdnja vrijedi za n + 1 onda ona vrijedi za svaki prirodni broj.

3. Kontradikcija

Jedan od popularnijih načina dokazivanja teorema je "metoda suprotnog".
Ako se pokušava dokazati tvrdnja , pretpostavi se da vrijedi tvrdnja (negacija od ) i izvedu se deduktivno posljedice. Ako se naiđe na kontradikciju (iskaz koji je u suprotnosti sa aksiomima ili prethodno dokazanim teoremima) zaključuje se da je pretpostavka pogrešna, tj. da vrijedi: i time je tvrdnja dokazana.

4. Konstrukcija

5. Vizualni dokaz.

Najpoznatiji je vizualni dokaz Pitagorinog teorema.

6. Statistički dokaz