Eulerova formula

Izvor: Wikipedija
Skoči na: orijentacija, traži

Eulerova formula, nazvana prema Leonhardu Euleru, prikazuje u području analize kompleksnih brojeva duboku povezanost trigonometrijskih funkcija s kompleksnim eksponencijalnim funkcijama. Eulerova formula ustanovljava da je za svaki realni broj  x,

e^{ix} = \cos x + i\sin x \!

gdje je e matematička konstanta i baza prirodnih logaritama, i imaginarna jedinica, a sin i cos trigonometrijske funkcije s argumentom x datim u radijanima. Eulerova formula vrijedi i ako je x kompleksni broj te se ponekad ova formula navodi i u njezinom općenitijem, kompleksnom obliku. Ova formula prema nekim autorima smatra se jednom od “najizuzetnijih formula na području cijele matematike”.

Povijest[uredi VE | uredi]

Bernoulli je negdje 1702. godine zapisao da je

\frac{dx}{1+x^2}=\frac{1}{2} \left(\frac{dx}{1-ix}+\frac{dx}{1+ix} \right).

te da je

\int \frac{dx}{1+x}=\ln(1+x),

Gore navedene jednakosti daju nam određeni uvid u pojam kompleksnih logaritmima. Bernoulli, međutim, nije ocijenio cjelinu. Njegovo dopisivanje s Eulerom (koji je također poznavao jednakost) pokazuje da nije naslutio dubinu matematičke pozadine. U međuvremenu je Roger Cotes 1714. godine otkrio da je

 \ln(\cos x + i\sin x)=ix \

Međutim, Cotes nije uočio činjenicu da kompleksni logaritmi mogu imati beskonačno mnogo vrijednosti i to posljedično periodičnosti trigonometrijskih funkcija. Upravo je Euler, negdje oko 1740. godine, obratio pažnju na eksponencijalne funkcije umjesto logaritamskih i izveo formulu koja je nazvana njemu u čast. Formula

e^{ix} = \cos x + i \sin x \,\!

je objavljena 1748. godine i Eulerov dokaz formule je zasnovan na jednakosti beskonačnih redova obiju strana izvoda. Nitko, međutim, u to doba nije uočio geometrijsku interpretaciju formule, kao pogled na kompleksne brojeve predočene u kompleksnoj ravnini. Tu vezu je tek nekih pedesetak godina kasnije ustanovio Caspar Wessel.

Primjene u teoriji kompleksnih brojeva[uredi VE | uredi]

Euler's formula.svg

Eulerova formula može se predočiti na način da funkcija eix rotira oko ishodišta kompleksne ravnine tijekom čega x poprima vrijednosti iz domene realnih brojeva. U tom smislu x je kut što ga čini dužina, koja spaja ishodište koordinatnog sustava u kompleksnoj ravnini s odgovarajućom točkom na jediničnoj kružnici, s pozitivnom realnom osi. Pri tome dužina, u osnovi vektor u kompleksnoj ravnini, rotira smjerom suprotno od smjera kazaljki na satu, a veličina kuta iskazuje se u radijanima. Izvorni dokaz se zasniva na razvoju Taylorovih redova za eksponencijalnu funkciju ez te periodičke funkcije sin x i cos x, gdje je z kompleksni broj, a x realan broj. Isti dokaz pokazuje da formula vrijedi i ako je x bilo koji kompleksan broj.

Eulerova formula na jednostavan način omogućava prijelaz iz prikaza kompleksnog broja u kartezijanskim koordinatama u prikaz kompleksnog broja u polarnim koordinatama. Iskaz kompleksnog broja u polarnim koordinatama bitno pojednostavljuje složenije operacije s kompleksnim brojevima kao što su, na primjer, množenje i potenciranje, a iz razloga što se bilo koji kompleksan broj z = x + iy može zapisati kao

 z = x + iy = |z| (\cos \phi + i\sin \phi ) = |z| e^{i \phi} \,
 \bar{z} = x - iy = |z| (\cos \phi - i\sin \phi ) = |z| e^{-i \phi} \,

gdje je

 x = \mathrm{Re}\{z\} \, realni dio
 y = \mathrm{Im}\{z\} \, imaginarni dio
|z| = \sqrt{x^2+y^2} apsolutna vrijednost ili veličina od z
\phi = \, arctan(y, x) zadan u radijanima.

Povezanost s trigonometrijom[uredi VE | uredi]

Eulerova formula iskazuje snažnu povezanost između matematičke analize i trigonometrije te omogućuje prikaz sin i cos funkcije u odgovarajućem obliku eksponencijalnih funkcija.

\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}
\sin x = \mathrm{Im}\{e^{ix}\} ={e^{ix} - e^{-ix} \over 2i}.

Gornje jednadžbe mogu se izvesti zbrajajući ili oduzimajući Eulerove formule

e^{ix} = \cos x + i \sin x \;
e^{-ix} = \cos(- x) + i \sin(- x)  = \cos x - i \sin x \;

i rješavajući ih po sin ili cos funkciji. Ove formule mogu čak poslužiti kao definicije trigonometrijskih funkcija kompleksnog argumenta x. Naime, stavimo li x = iy, nalazimo da je

 \cos(iy) =  {e^{-y} + e^{y} \over 2} = \cosh(y)
 \sin(iy) =  {e^{-y} - e^{y} \over 2i} = -{1 \over i} {e^{y} - e^{-y} \over 2} = i\sinh(y).

Kompleksne eksponencijalne funkcije znatno pojednostavljuju trigonometriju jer je daleko lakše računati s njima nego sa sinusnim, odn. kosinusnim ekvivalentima. Jedan od načina je da se prikaz periodičke funkcije jednostavno prikaže pomoću eksponencijalnom funkcijom. Na primjer


\begin{align}
\cos x\cdot \cos y & = \frac{(e^{ix}+e^{-ix})}{2} \cdot \frac{(e^{iy}+e^{-iy})}{2} \\
& = \frac{1}{2}\cdot \frac{e^{i(x+y)}+e^{i(x-y)}+e^{i(-x+y)}+e^{i(-x-y)}}{2} \\
& = \frac{1}{2} \left[ \underbrace{ \frac{e^{i(x+y)} + e^{-i(x+y)}}{2} }_{\cos(x+y)} + \underbrace{ \frac{e^{i(x-y)} + e^{-i(x-y)}}{2} }_{\cos(x-y)} \right].
\end{align}

Druge primjene[uredi VE | uredi]

U elektrotehnici i drugim područjima, električni signali, odn. veličine koje se periodički mijenjaju s vremenom često se opisuju kao kombinacije sinusnih i kosinusnih funkcija (Fourierova analiza) te se kao takve izražavaju u obliku eksponencijalnih funkcija s imaginarnim eksponentima, koristeći upravo Eulerovu formulu. Štoviše, analiza električnih krugova i mreža može uključiti upravo Eulerovu formulu i njezine derivate u svrhu prikaza faznih i amplitudnih odnosa struje i napona.