Binomni koeficijent

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretraživanje
Binomni koeficijenti se mogu organizirati u obliku Pascalova trokuta

U matematici, binomni koeficijent je pozitivni cijeli broj, koji se pojavljuje kao koeficijent binomnog poučka. Indeksira se dvama ne-negativnim cijelim brojevima; binomni koeficijent s indeksima n i k obično se zapisuje kao: 

i čita se n iznad ili povrh k. To je koeficijent člana  polinomne ekspanzije binomne potencije oblika . Pod odgovarajućim okolnostima vrijednost koeficijenta definirana je izrazom:

Organizacija binomnih koeficijenata u redove uzastopnih vrijednosti n, u kojem k ima vrijednosti od 0 do n, daje Pascalov trokut.

Binomni koeficijenti su važan dio mnogih područja matematike, posebno u području kombinatorike.

Vizualizacija binomnog proširenja do četvrte potencije

Neka svojstva binomnih koeficijenata[uredi VE | uredi]

Svojstvo simetrije:[1]:18

Osnovna relacija iz Pascalovog trokuta:[1]:20

Binomni koeficijent u matematičkoj analizi[2][uredi VE | uredi]

Za proizvoljan realni broj binomni koeficijent se definira formulama:

gdje je u nazivniku razlomka funkcija faktorijel.

Dano proširenje binomnog koeficijenta na realne brojeve nam omogućuje da npr. izračunamo izraze poput ili, između ostalog, da se razvije u red za .

Izvori[uredi VE | uredi]

  1. 1,0 1,1 Neven Elezović: Matematika 4 (udžbenik za IV. razred gimnazije), Element, Zagreb, 2000.
  2. Svetozar Kurepa: Matematička analiza 2 funkcije jedne varijable, Tehnička knjiga, Zagreb, 1971. (str. 108-110)


P math.png Nedovršeni članak Binomni koeficijent koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.