Infinitezimalni račun

Izvor: Wikipedija
Skoči na: orijentacija, traži

Infinitezimalni račun je grana matematike, koja se bavi funkcijama, derivacijama, integralima, limesima funkcije i graničnim vrijednostima. Proučava razumijevanje i opisivanje promjena mjerljivih varijabli. Središnji koncept kojim se opisuje promjena varijable je funkcija. Dvije glavne grane su diferencijalni račun i integralni račun. Infinitezimalni račun je osnova matematičke analize .

Koristi se u znanosti, ekonomiji, inženjerstvu itd. Služi za rješavanje mnogih matematičkih problema, koji se ne mogu riješiti algebrom ili geometrijom. Infinitezimalni račun se na latinskom jeziku kaže "calculus infinitesimalis" i iz toga je proizašao naziv "kalkulus", koji se koristi u dijelu svijeta. Riječ "infinitesimalis" znači "beskrajno mala količina".

Povijest[uredi VE | uredi]

U antičkom razdoblju bilo je ideja sličnih infinitezimalnom računu. Egipćani su računali volumen piramide bez vrha. Grci Eudoks i Arhimed koristili su metodu ekshaustacije, koja je metoda izračunavanja površine nekog oblika tako što se u njega ubacuje niz poligona, čije površine konvergiraju prema površini cijelog oblika. Tu metodu koristio je i Kinez Liu Hui u 3. stoljeću, da bi izračunao površinu kruga. U 5. stoljeću Ču Čungdži koristio je metodu, koja će se kasnije nazvati Cavalierov princip za volumen sfere.

Godine 499. indijski je matematičar Aryabhata I. računao infinitezimalanim računom i zapisao astronomski problem u obliku diferencijalne jednadžbe. Na temelju te jednadžbe, u 12. stoljeću Bhaskara je razvio neku vrstu derivacije. Oko 1000. godine Ibn al-Haitam osmislio je formulu za sve vrste četvrtih potencija i time priredio put za integralni račun. U 12. stoljeću perzijski matematičar Šaraf al-Din al-Tusi otkrio je pravilo za odvajanje kubičnoga polinoma. U 17. stoljeću japanski matematičar Šinsuke Seki Kova došao je do osnovnih spoznaja infinitezimalnoga računa.

Infinitezimalni račun otkrili su neovisno jedan o drugome u otprilike isto vrijeme Isaac Newton i Gottfried Wilhelm Leibniz. Otkrili su zakone diferencijalnog i integralnog računa, derivacije i približne polinomske serije. Njihov rad nastavili su matematičari Augustin Louis Cauchy, Bernhard Riemann, Karl Weierstrass, Henri Léon Lebesgue i dr.

Glavna poglavlja[uredi VE | uredi]

Derivacija[uredi VE | uredi]

Derivacija funkcije  f je granična vrijednost kvocijenta prirasta funkcije i prirasta argumenta kada prirast argumenta teži nuli.

Integral[uredi VE | uredi]

Za danu funkciju f(x) realne varijable x i interval [a,b] na pravcu realnih brojeva, integral

\int_a^b f(x)dx

predstavlja površinu područja u xy-ravnini ograničenu grafom od f, x-osi, i vertikalnim crtama x=a i x=b.

Limes fukcije[uredi VE | uredi]

Poglavlje limesa funkcije razvilo se iz problema, kako izračunati vrijednost funkcije u slučajevima, kada funkcija nije dobro definirana npr.: dijeljenje s nulom. Limes funkcije f u točki a je broj, kojemu se pridružuje funkcijska vrijednost f(x), kada se vrijednost x približuje a.

\lim_{x\to a} f(x)


npr.

\lim_{x\to 0} \frac {sin(x)}{x}\ = 1


Svojstva limesa[uredi VE | uredi]

\begin{matrix}
\lim\limits_{x \to p} & (f(x) + g(x)) & = & \lim\limits_{x \to p} f(x) + \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x) - g(x)) & = & \lim\limits_{x \to p} f(x) - \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x)\cdot g(x)) & = & \lim\limits_{x \to p} f(x) \cdot \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x)/g(x)) & = & {\lim\limits_{x \to p} f(x) / \lim\limits_{x \to p} g(x)}
\end{matrix}