Matematika

Izvor: Wikipedija
Skoči na: orijentacija, traži

Matematika (od grčkog mathema - znanost) je egzaktna (točna, nedvojbena) znanost koja izučava aksiomatski definirane apstraktne strukture koristeći matematičku logiku.

O matematici; povijest i razvoj[uredi VE | uredi]

Matematika se počela razvijati prije više tisuća godina (okvirno), još u doba starih Egipćana. Poslije se proširila u Grčku i grčko-rimski svijet. Osim toga, aktivno se razvijala u Kini i Japanu. Razvila se iz potrebe da se obavljaju proračuni u trgovini, mjerenja zemljišta i predviđaju astronomski događaji. Ove tri primjene mogu se dovesti u vezu s grubom podjelom matematike na izučavanje strukture, prostora i izmjena.

Fundamentalnu knjigu u razvoju matematike, "Elementi", je napisao Euklid. Knjiga ima 12 svezaka. Tu je prva knjiga pisana stilom koji je danas poznat kao (egzaktni) matematički:

definicija - aksiom - teorem - dokaz

Knjiga je zbog tadašnjeg nedostatka simbola pisana u potpunosti riječima, što danas, naravno, nije slučaj. Proučavanje geometrijskih prostora je, u pravom smislu te riječi, počelo kada je Euklid postavio svojih pet aksioma o prostoru. Takav prostor se danas zove euklidski prostor, no tokom mnogo godina su se razvili i neeuklidski prostori te još mnogi drugi. Matematika izniče gdje god se pojavljuju teški problemi vezani za veličinu, strukturu, prostor ili promjenu. U početku; trgovina i mjerenje zemljišta, kasnije; astronomija, a danas; sveopće. Matematika se uči u osnovnim i srednjim školama kao obavezan predmet. Također i veliki dio fakulteta ima obavezne i izborne matematičke kolegije. [1] Godišnje se prijavi oko 200 000 novih matematičkih teorema; na raznim razinama znanja i stručnosti postoji preko 1600 časopisa koji objavljuju matematičke materijale. Današnja matematika je podosta napredna, u svim smjerovima, a ljudi koji se bave modernom matematikom su usko specijalizirani i nečesto bave stvarima koje su nemamtematičarima izvanrazumske. Ipak, postoje goleme primjene. Krajem četrdesetih godina prošlog stoljeća John von Neumann je procijenio da bi obrazovani matematičar mogao raspolagati oko 10% osnovnih znanja cijele matematike do tada poznate. Do danas se taj postotak značajno smanjio. Za razliku od rane, istočnjačke i zapadnjačke izolacije, današnja matematika je ujedinjena.

Gruba podjela matematike[uredi VE | uredi]

Osnove matematike sadrže izučavanje strukture, prostora i promjenu.

Strukture[uredi VE | uredi]

Izučavanje strukture počinje s brojevima, u početku s prirodnim brojevima i cijelim brojevima.

Skup prirodnih brojeva = N

Skup prirodnih brojeva i 0 = N0

Skup cijelih brojeva = Z

Skup racionalnih brojeva = Q

Skup iracionalnih brojeva = I

Skup realnih brojeva = R

U = Unija (za skupove zbrajanje)

N U 0 = N0

N0 U negativni cijeli brojevi = Z

Z U razlomci i decimalni brojevi = Q

Q U I = R

Osnovna pravila za aritmetičke operacije su definirana u osnovnoj algebri, a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednadžbi je dovelo do razvoja apstraktne algebre, koja između ostalog izučava prstenove i polja, strukture što poopćuju svojstva koja posjeduju brojevi.

Fizikalno važan koncept vektora i matrica se proučava u linearnoj algebri.

Prostor[uredi VE | uredi]

Proučavanje prostora je počelo s geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširilo na neeuklidske geometrije, koje imaju centralnu ulogu u općoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Nadalje i apstraktni vektroski, unitarni, metrički i normirani prostori. Teorija grupa izučava koncept simetrije, i predstavlja vezu u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta.

Promjene[uredi VE | uredi]

Razumijevanje i opisivanje promjena mjerljivih varijabli je glavna značajka prirodnih znanosti, i diferencijalni (infinitezimalni) račun je razvijen u te svrhe. Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, a pritom razvijene metode izučavaju se u diferencijalnim jednadžbama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, a detaljno izučavanje njihovih svojstava i funkcija je predmet matematičke analize. Zbog unutrašnjih, matematičkih, razloga uveden je koncept kompleksnih brojeva, koji je glavni predmet izučavanja kompleksne analize. Funkcionalna analiza je usredotočena na n-dimenzionalne prostore funkcija postavljajući time neke od primjenjivih osnova i za izučavanje kvantne mehanike.

Napomena[uredi VE | uredi]

Radi razjašnjavanja i izučavanja osnova matematike, razvijena su područja teorija skupova, matematička logika i teorija modela.

Aritmetika daje važnost brojevima, algebra rješavanju jednadžbi, dok geometrija objašnjava osobine i odnose figura u prostoru. [2] Matematika bi se mogla okarakterizirati kao čvrsto stablo u rastu; sa deblom, granama i lišćem.

Primjena matematike[uredi VE | uredi]

Danas se matematika jako razvila i ima primjene u mnogo grana, kako prirodnih, tako i društvenih znanosti. Važna grana primijenjene matematike je Statistika (stohastička matematika), koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička matematika izučava numeričke metode izračunavanja, a diskretna matematika je zajedničko ime za više grana matematike koja se velikim dijelom koriste kao alati u računarskim znanostima. Razvijena je i matematička teorija računarstva, kao i niz drugih interdisciplinarnih grana.

Kategorizacija[uredi VE | uredi]

Slijedi kategorizacija po nekim od istaknutijih grana matematike:

Veličine[uredi VE | uredi]

1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Prirodni brojevi Cijeli brojevi Racionalni brojevi Realni brojevi Kompleksni brojevi


Počela i filozofija[uredi VE | uredi]

 p \Rightarrow q \, Venn A intersect B.svg Commutative diagram for morphism.svg
Matematička logika Teorija skupova Teorija kategorija


Strukture[uredi VE | uredi]

Elliptic curve simple.png Rubik's cube.svg Group diagdram D6.svg Lattice of the divisibility of 60.svg
Teorija brojeva Apstraktna algebra Teorija grupa Teorija redoslijeda

Prostor[uredi VE | uredi]

Illustration to Euclid's proof of the Pythagorean theorem.svg Sine cosine plot.svg Hyperbolic triangle.svg Torus.png Koch curve.svg
Geometrija Trigonometrija Diferencijalna geometrija Topologija Fraktalna geometrija


Stanja, promjena, analiza[uredi VE | uredi]

Integral as region under curve.svg Vector field.svg Airflow-Obstructed-Duct.png Limitcycle.svg Lorenz attractor.svg
Matematička analiza Vektorska analiza Diferencijalne jednadžbe Dinamički sustavi Teorija kaosa


Diskretna matematika[uredi VE | uredi]

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix} DFAexample.svg Caesar3.svg 6n-graf.svg
Kombinatorika Teorija izračunljivosti Kriptografija Teorija grafova


Primijenjena matematika[uredi VE | uredi]

Matematika i ostale znanosti[uredi VE | uredi]

Također se prilično često pokazalo da razvoj matematike ne mora nužno pratiti razvoj fizike ili neke druge "konkretnije" znanosti, to jest matematika se može razvijati "sama za sebe", a primjena onoga što se dobije već se nađe tokom godina razvoja drugih znanosti (primjeri za to nisu odviše jednostavni, ali, recimo, Riemannov prostor je jedan primjer za to - razvio se sam po sebi, a primjenu je našao tek u teoriji relativnosti)


Matematika u citatima[uredi VE | uredi]

  • "Ne bi li se muzika mogla opisati kao matematika osjećaja, a matematika kao muzika razuma? Njihov duh je isti. Tako glazbenik osjeća matematiku, a matematičar misli muziku. Jedna će pojačati osjećaj drugoj kad zasja ljudski um podignut u savršenstvo.", Vladimir Devidé
  • "Matematika nije nipošto dosadna ili bez mašte, već naprotiv, poput plemenite djevojke koja uzvraća ljubav onom tko je voli i razumije", Vladimir Devidé
  • "Svim ljudima nisu sve stvari potrebne, ali je račun ne samo svima nego i svakome jako potreban. Tko računati ili barem brojiti ne zna, mora se izbrisati iz broja svih ljudi, inače nema prijateljstva među trgovcima, ni ljubavi među susjedima, ni sluge u općini, niti pravednost u pravdi stalno stanovati može!", Platon
  • "Matematika je simbol naše intelektualne snage i jamstva da će se ljudski um uvijek boriti za uzvišene ciljeve", Danilo Blanuša
  • "Znanje kojem teži geometrija je znanje o vječnome.", Platon


Utjecajni matematičari[uredi VE | uredi]

Stari vijek[uredi VE | uredi]

Pitagora - Eratosten - Arhimed - Euklid

Srednji vijek[uredi VE | uredi]

Brahmagupta - Al-Khwarizmi - Fibonacci

Novi vijek[uredi VE | uredi]

René Descartes - Isaac Newton - Gottfried Wilhelm Leibniz - Pierre de Fermat - Évariste Galois - Joseph-Louis Lagrange - Pierre-Simon Laplace - Adrien-Marie Legendre - Augustin Louis Cauchy - Leonhard Euler - Charles Fourier - Arthur Cayley - Karl Weierstrass - Sofija Kovaljevska - Gösta Mittag-Leffler - Karl Friedrich Gauss - Lobačevski - Niels Henrik Abel - Richard Dedekind - Leopold Kronecker - Bernhard Riemann - William Hamilton - Sophus Lie - Georg Cantor - Felix Klein

20. i 21. stoljeće[uredi VE | uredi]

David Hilbert - Henri Poincaré - Élie Cartan - Emmy Noether - Jacques Hadamard - Emil Artin - John von Neumann - Srīnivāsa Aiyangār Rāmānujan - Henri Lebesgue - Godfried Harold Hardy - John Littlewood - Brower - Felix Hausdorff - Kurt Gödel - Alonzo Church - Alan Turing - Alfred Tarski - Thoralf Skolem - Hermann Weyl - Sergej Soboljev - Anatolij Ivanovič Maljcev - Stefan Banach - Andrej Nikolajevič Kolmogorov - Lev Pontrjagin - William Hodge - Izrael Geljfand - André Weil - Henri Cartan - Laurent Schwarz - Harish-Chandra - Wilhelm Magnus - Paul Erdös - Abraham Robinson - Nicolas Bourbaki - Friedrich Hirzebruch - Benoit B. Mandelbrot - Samuel Eilenberg - Vladimir Arnoljd - Jean-Pierre Serre - Saunders MacLane - Norman Steenrod - Alexandre Grothendieck - William Lawvere - Lars Hörmander - Daniel Quillen - Sergej Novikov - John Milnor - Michael Artin - Pierre Deligne - Dennis Sullivan - Robert Langlands - Mihajl Gromov - Jurij Manjin - Alexander Beilinson - Vladimir Drinfeljd - Gerd Faltings - Saharon Shelah - Alain Connes - Edward Witten - Maxim Kontsevich - André Joyal - Vladimir Voevodsky - Michael Hopkins - Sasha Eliashberg - Grigorij Perelman - Terence Tao - Jacob Lurie

Utjecajni hrvatski matematičari[uredi VE | uredi]

Marin Getaldić, Ruđer Bošković, Stjepan Gradić, Danilo Blanuša, William Feller, Svetozar Kurepa, Sibe Mardešić, Marko Tadić, Mladen Bestvina, Ivan Mirković

Izvori[uredi VE | uredi]

  1. Matematika je znanost tradicionalno povezana s tehničkim znanostima i fizikom. Zadnjih smo desetljeća svjedoci prodora matematike u ekonomiju, medicinu i ostale znanosti. Tome treba pridodati i nagli razvoj informatičkih tehnologija u koje je matematika uključena od samih početaka.
  2. Matematika se gradi i na samoj sebi. Geometrija na aritmetici i algebri; na njima diferencijalni i integralni račun. Topologija je pak izdanak geometrije, teorije skupova i algebre. Diferencijalne jednadžbe se grade na diferencijalnom i integralnom računu, topologiji i algebri.

Vanjske poveznice[uredi VE | uredi]