Vektorski prostor

Izvor: Wikipedija
Skoči na: orijentacija, traži

Vektorski ili linearni prostor je algebarski pojam u matematici koji nalazi primjenu u svim glavnim granama matematike, među kojima su linearna algebra, analiza i analitička geometrija. Definira se na sljedeći način:

Neka skup V ima strukturu Abelove grupe u odnosu na zbrajanje. Elemente skupa V zovemo vektori. Neutralni element označujemo sa 0 i zovemo nulti vektor.

Neka skup F ima strukturu polja. Elemente skupa F zovemo skalari, a neutralne elemente u odnosu na dvije binarne operacije označujemo sa 0 i 1.

Na skupu F × V definirano je množenje vektora skalarom, tj. preslikavanje F × V → V, koje svakom skalaru i svakom vektoru pridružuje vektor , tako da vrijede sljedeći aksiomi:

(I)
(II)
(III)
(IV)

Ovako se definirano preslikavanje zove množenje vektora skalarom, dok se V naziva vektorski prostor nad poljem F i piše V(F).

Uobičajeno je da se vektorski prostori nad poljem realnih odnosno kompleksnih brojeva nazivaju realni, odnosno kompleksni vektorski prostori. Također, vektorski se prostor u kojem je definiran skalarni produkt naziva Euklidski vektorski prostor.