Fotoelektrični učinak

Izvor: Wikipedija
Skoči na: orijentacija, traži
Prikaz fotoelektričnog efekta

Fotoelektrični učinak ili fotoefekt je fizikalna pojava kod koje djelovanjem elektromagnetnog zračenja dovoljno kratke valne duljine (npr. u vidljivom ili ultraljubičastom području spektra) dolazi do izbijanja elektrona iz obasjanog materijala (obično kovine). Zračenje s valnom duljinom većom od granične ne izbija elektrone, jer elektroni ne mogu dobiti dovoljno energije za raskidanje veze s atomom. Ponekad se ti izbačeni elektroni nazivaju “fotoelektroni”.[1] [2] Prvi je put tu pojavu primjetio Heinrich Herz 1887. i on je otkrio ako se elektrode osvijetle ultraljubičastim zračenjem, lakše stvaraju iskru.

Za fotoefekt potrebni su fotoni energije od nekoliko elektronvolti do preko 1 MeV i kemijski elementi visokog atomskog broja. Proučavanje fotoefekta dovelo je do važnog otkrića kvantne prirode svjetlosti i elektrona, te do stvaranja ideje dualizma, ili dvostrukog svojstva vala i čestice. Osim toga, došlo se do novih pojmova, kao što je fotovodljivost, fotootpornost, fotonaponski efekt i fotoelektrokemijski efekt.

Način rada[uredi VE | uredi]

Fotomultiplikator

Fotoni svjetla imaju točno određenu količinu energije, koja određuje frekvenciju svjetlosti. Ako neki elektron u materijalu upije energiju fotona, pa njegova energija bude veća od izlaznog rada materijala (energija vezanja elektrona za atom ili molekulu), onda elektron bude izbačen iz materijala. Ako je energija ulaznog fotona svjetlosti mala, tada elektron neće imati dovoljno energije da napusti materijal. Ako povećavamo intenzitet energije ulazne svjetlosti, povećat će se i broj izbačenih elektrona, ali se neće povećati energija pojedinog elektrona. To znači, da energija izbačenih elektrona ne ovisi o intenzitetu svjetlosti, već samo o frekvenciji ulaznih fotona. To je zapravo međudjelovanje ulaznih fotona i izbačenih elektrona.

Kada elektron upije energiju fotona, jedan dio energije se troši na oslobađanje elektrona iz materijala, a drugi dio energije daje kinetičku energiju elektronu.

Rezultati pokusa[uredi VE | uredi]

  • Za određeni metal i frekvenciju ulazne svjetlosti, kinetička energija izbačenog elektrona je izravno proporcionalna s intenzitetom ulazne svjetlosti
  • Za određeni metal, postoji određena frekvencija ulazne svjetlosti, ispod koje elektroni ne mogu biti izbačeni, i ta se frekvencija naziva granična frekvencija.
  • Za određeni metal i s određenim izlaznim radom materijala, povećanjem intenziteta ulazne svjetlosti, povećava se i veličina električne struje, iako napon zaustavljanja ostaje isti.
  • Za određeni metal i s određenim izlaznim radom materijala, povećanjem frekvencije ulazne svjetlosti, povećava se maksimalna kinetička energija kojom su elektroni izbačeni, ali jačina električne struje ostaje ista, dok se povećava napon zaustavljanja.
  • Iznad granične frekvencije, maksimalna kinetička energija kojom su elektroni izbačeni ovisi o frekvenciji ulazne svjetlosti, ali ne ovisi o intenzitetu ulazne svjetlosti (ako nije prevelik)
  • Zaostajanje između ulazne svjetlosti i emisije elektrona vrlo je malo, oko 10−9 sekundi

Einsteinova jednadžba[uredi VE | uredi]

Ovisnost kinetičke energije elektrona Ek o frekvenciji upadne svjetlosti f

Ovisnost najveće moguće kinetičke energije elektrona Ek o frekvenciji upadne svjetlosti f daje Einsteinova jednadžba:

E_k = h(f - f_0) = hf - W_0\,

gdje je h - Planckova konstanta, f0 - granična frekvencija ovisna o materijalu, f – frekvencija ulazne svjetlosti, a hf0 - jednako izlaznom radu materijala W0. Budući da kinetička energija elektrona mora biti pozitivna, to znači da i frekvencija ulazne svjetlosti, mora biti veća od granične frekvencije f0, da bi se fotoefekt uopće pojavio. [3]

Albert Einstein je za objašnjenje ovog efekta 1921. dobio Nobelovu nagradu za fiziku.

Napon zaustavljanja[uredi VE | uredi]

Druga opažena osobina efekta je vezana za gibanje električnih naboja koji napuštaju metalnu ploču. To se gibanje može zaustaviti ako se električni naboji koče vanjskim električnim poljem. Pokusi su pokazivali da veličina napona kočenja uopće ne ovisi o intenzitetu svjetlosti, već samo o njenoj valnoj duljini. To se također nije moglo objasniti teorijom o svjetlosti kao valu: ona je predviđala da će s povećanjem intenziteta rasti napon kočenja koji neće ovisiti o valnoj duljini.

Ako je m masa elektrona i vmax je maksimalna brzina izbačenih elektrona, onda vrijedi:

Maximum \ K.E. \ of \ electron \ = \ \frac {1} {2} m v^2_{\mathrm{max}}

Gornja jednadžba pokazuje da maksimalna brzina emitiranih elektrona ne ovisi o intenzitetu ulazne svjetlosti. Gornju jednadžbu možemo pisati:

K_{\mathrm{max}} = eV_0

V0 - napon zaustavljanja ovisi linijski s frekvencijom ulaznog svjetla.

Povijest[uredi VE | uredi]

Elektroskop sa zlatnim listom

Kada je površina nekog materijala izložena elektromagnetskom zračenju iznad izvjesne granične frekvencije (vidljiva svjetlost za alkalijske metale, blisko UV zračenje za ostale metale i ekstremno UV zračenje za nemetale), taj materijal upija zračenje i izbacuje elektrone. Tu pojavu otkrio je Herz 1887., a poslije je ispitivao i Lenard 1900.

Ultraljubičasto zračenje može se dobiti elektrolučnom svjetiljkom, ili paljenjem magnezija, ili iskrenjem između elektroda cinka ili kadmija. Sunce nije baš bogato UV zrakama, jer ih upija ionosfera i ne stvara pojavu fotoefekta kao elektrolučna svjetiljka. [4] [5]

19.stoljeće[uredi VE | uredi]

1839. Alexandre Becquerel je otkrio fotonaponski efekt dok je proučavao utjecaj svjetla na elektrode u elektrolitu. Iako to nije fotoefekt, ipak postoji jaka sveza između svjetla i električnih svojstva materijala. 1873. Willoughby Smith je otkrio fotoinduktivitet selenija, dok je ispitivao telegrafske kabele za podmornice. [6]

1887. Heinrich Hertz je primjetio fotoefekt dok je slao i primao elektromagnetske valove. Njegov prijamnik imao je zavojnicu s razmakom za iskrenje. Kada je prijamnik spremio u kutiju, primijetio je da se iskrenje smanjilo, dok bi se na svjetlu pojačalo. [7]

Od 1888. do 1891., Aleksandar Stoletov je usavršio opremu za izvođenje fotoefekta i detaljno ga proučavao. Rezultate je iskoristio za stvaranje solarnih članaka. [8]

1899. J.J. Thomson je proučavao utjecaj ultraljubičastog svjetla na katodne cijevi. [9]

Način rada kutne fotoelektronske spektroskopije

20.stoljeće[uredi VE | uredi]

1900. Philipp Lenard je otkrio da može ionizirati plinove s ultraljubičastom svjetlosti. 1902. Lenard je otkrio da se ionizacija plinova povećava ako ga ozrači ultraljubičastim svjetlom veće frekvencije, što nije bilo u skladu s Maxwellovom valnom teorijom svjetlosti, koja je predviđala da će se energija povećavati s intenzitetom zračenja.

1905. Albert Einstein uspio je objasniti fotoefekt uvodeći točno određene količine energije ili kvant svjetlosti, koji se poslije nazvao foton. Na osnovu Planckovog zakona, zaključio je da bi iznos kvanta svjetlosti morao biti proporcionalan s frekvencijom svjetlosti i pomnožen s konstantom, koja se pokusima dobila kao Planckova konstanta. Do fotoefekta je dolazilo samo ako se prešla određena granična frekvencija. Za te rezultate Einstein je dobio Nobelovu nagradu za fiziku 1921. [10]

Primjena[uredi VE | uredi]

Fotomultiplikator[uredi VE | uredi]

Uređaj za noćno gledanje
Fotootpornik

Fotomultiplikator je vrlo osjetljiv detektor u području vidljivog, ultraljubičastog i bliskog infracrvenog zračenja. Električni signal koji nastaje na fotosjetljivom sloju pojačava se do 100 milijuna puta, što omogućuje registriranje pojedinačnih fotona. Zahvaljujući svojim svojstvima još uvijek se primjenjuje u fizici, astronomiji, medicini i filmskoj tehnici (telekino), iako je u nekim primjenama zamijenjen poluvodičkim elementima kao što je lavinska fotodioda.

Elektroskop sa zlatnim listom[uredi VE | uredi]

Elektroskop sa zlatnim listom se upotrebljava za otkrivanje statičkog elektriciteta. Ako se glava elektroskopa naelektrizira, onda se zlatni list odmakne od metalne šipke, budući da imaju jednak električni naboj. Elektroskop se može iskoristiti za ispitivanje fotoefekta. Ako glavu elektroskopa osvijetlimo ultraljubičastim svjetlom, doći će do izbijanja elektrona i zlatni listić će se približiti metalnoj šipki. Ovaj pokus je bitan za određivanje granične frekvencije ulaznog svjetla kod fotoefekta. [11]

Fotoelektronska spektroskopija[uredi VE | uredi]

Fotoelektronska spektroskopija nije klasična spektroskopija jer ne promatra elektromagnetsko zračenje koje je molekula apsorbirala ili emitirala, nego promatra elektrone koje je molekula ispustila zbog djelovanja elektromagnetskog zračenja. Kako elekromagnetsko zračenje mora imati dovoljnu energiju za ionizaciju molekule, primjenjuje se vakuumsko ultraljubičasto zračenje. Zračenje mora biti monokromatsko. Rjeđe se primjenjuje rendgensko zračenje. Vakuumsko ultraljubičasto zračenje ima dovoljnu energiju za ionizaciju valentnih elektrona, pa se primjenom tog zračenja, mogu vidjeti samo ionizacije valentnih elektrona i odrediti energije njihovih orbitala. Primjenom rendgenskog zračenja, mogu se ionizirati i sržni elektroni. Primjenom rendgenskog zračenja ne može se postići razlučivanje, kao uporabom vakuumskog ultraljubičastog zračenja. Kako elektroni utječu jedni na druge, energije sržnih elektrona u manjoj mjeri ovise i o vanjskim elektronima, a tako i o elektronskom okruženju atoma. Na taj je način moguće analizirati strukture molekula. Fotoelektronska spektroskopija koja upotrebljava rendgensko zračenje, naziva se i ESCA (engl. Electron Spectroscopy for Chemical Analysis). Fotoelektronska spektroskopija se zasniva na fotoelektričnom efektu. Energija elektrona, izbačenog iz molekule je jednaka energiji elektromagnetskog zračenja, umanjenoj za energiju vezanja elektrona koji je izbačen, te energija vibracije i rotacije molekule. U fotoelektronskom spektru vide se energije elektrona, a ako spektar ima dovoljno veliko razlučivanje, moguće je vidjeti i vibracijsku strukturu. [12] [13]

Svemirske letjelice[uredi VE | uredi]

Fotoefekt prouzroči da se plohe kod svemirske letjelice, koje su izložene Sunčevom zračenju, pozitivno nabiju. To može biti i do 10-tak volti. Problem je što je druga strana letjelice obično negativno nabijena (nekoliko tisuća volti) zbog prisutne plazme, pa dolazi do pojave električne struje, koja može oštetiti neke električne dijelove. [14]

Mjesečeva prašina[uredi VE | uredi]

Sunčeve zrake udaraju prašinu na mjesecu, koja postaje električni nabijena, zbog fotoefekta. Zbog toga čestice prašine se međusobno odbijaju, podižu iznad površine elektrostatskim lebdenjem. Ta pojava izgleda kao “atmosferska prašina” ili blijeda izmaglica. Najmanje čestice mogu biti izbačene i do kilometar u visinu. Prvi put je snimljena 1960. sa svemirskih sondi iz programa "Surveyor". [15] [16]

Uređaji za noćno gledanje[uredi VE | uredi]

Fotoni koji udaraju u tanki film alkalijskih metala ili poluvodičkog materijala, kao što je galijev arsenid u cijevi za pojačavanje slike, mogu izbaciti elektrone zbog fotoefekta. Zatim se elektroni ubrzavaju električnim poljem, do ekrana s fosfornim slojem, pretvarajući elektrone natrag u fotone, koji stvaraju pojačanu sliku u uređajima za noćno gledanje.

Izvori[uredi VE | uredi]

  1. "Physics for Scientists & Engineers" Serway Raymond A., 1990., publisher = Saunders, [1]
  2. Sears Francis W., Mark W. Zemansky and Hugh D. Young (1983):, University Physics, Sixth Edition, Addison-Wesley, pp. 843-4
  3. Fromhold A.T.: "Quantum mechanics for applied physics and engineering", publisher = Courier Dover Publications, 1991., [2]
  4. G. C. Schmidt, Wied. Ann. Uiv. p. 708, 1898.
  5. O. Knoblauch, Zeit.J. Physikalisclte Chemie, xxix. p. 527, 1899.
  6. [3] Smith, W., (1873) "Effect of Light on Selenium during the passage of an Electric Current", Nature, 1873-02-20, p.303.
  7. "Report of the Board of Regents By Smithsonian Institution", Smithsonian Institution. [4]
  8. A. Stoletow, 1890., Journal de Physique
  9. The International year book. (1900). New York: Dodd, Mead & Company. Page 659.
  10. Willis E. Lamb, Willis Lamb, Scully Marlan O.: "The photoelectric effect without photons" [5] 1968.
  11. K. A. Tsokos, Cambridge Physics for the IB Diploma, Cambridge University Press
  12. "Photoelectron Spectroscopy Principles and Applications" Stefan Hüfner. Springer, 3rd edition, 2003.
  13. "Solid-State Photoelectron Spectroscopy with Synchrotron Radiation" John H. Weaver, Giorgio Margaritondo. "Science 12" 1979.
  14. [6] "Spacecraft charging"
  15. [7] Bell Trudy E., "Moon fountains", FirstScience.com, 2001.
  16. [8] "Dust gets a charge in a vacuum"
Logotip Zajedničkog poslužitelja
Na Zajedničkom poslužitelju postoje datoteke na temu: Fotoelektrični učinak.