Neprekidnost funkcije

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretraživanje

Da je funkcija neprekidna u točki znači da se njena vrijednost u toj točki može aproksimirati ukoliko se sama točka aproksimira nekim brojem.

Definicija neprekidnosti u točki[uredi VE | uredi]

Stroga matematička definicija neprekidnosti uvodi se ovako i ponekad se zove određenje:[1]:15

Neka je na intervalu zadana realna funkcija . Ona je neprekidna u točki intervala , ako za svako postoji barem jedno takvo da za svako iz intervala za koje je mora biti .

Funkcija f(x)=1/x je neograničena u okolini točke 0, ali je neprekidna u svakoj drugoj točki.

Neka svojstva funkcija neprekidnih u točki[uredi VE | uredi]

Dvije leme koje se mogu izreći o neprekidnim funkcijama u točki su:[1]:20, 21

Ako je funkcija neprekidna u nekoj točki onda je ona i ograničena u nekoj okolini te točke. Ako je funkcija neprekidna u nekoj točki i ako se ne poništava u toj točki onda postoji okolina oko te točke u kojoj funkcija ne mijenja predznak.

Određene operacije sa neprekidnim funkcijama dovode opet do neprekidnih funkcija, tako su kompozicija i linearna kombinacija neprekidnih funkcija također neprekidne funkcije. Javlja se i tzv. globalni efekt koji znači da su sve elementarne funkcije neprekidne gdje su definirane (za dokaz te činjenice vidjeti [1] str. 37).

Limes i neprekidnost[uredi VE | uredi]

Neprekidnost je u uskoj vezi sa limesom (graničnom vrijednošću) funkcije koji se može definirati kao "proširenje funkcije po neprekidnosti".[1]:48, 49 Jedan od teorema koji veže neprekidnost i limes tvrdi da je neprekidnost u nekoj točki c logički ekvivalentna sa postojanjem limesa funkcije u toj točki koji je jednak f(c) gdje je f funkcija. Prema tome, neprekidnost se može uvesti i preko limesa, što je često u nekim udžbenicima. Naravno, ako funkcija ima derivaciju (izvod) u nekoj točki onda je ona i neprekidna u toj točki.

Neprekidnost funkcija više varijabli[uredi VE | uredi]

Za funkcije iz u definicija neprekidnosti je analogna samo što se umjesto apsolutne vrijednosti uvode vrijednosti metrike (razdaljinske funkcije) definirane na tim prostorima.[2]

Funkcije neprekidne na segmentu[uredi VE | uredi]

"Dobra" svojstva funkcija neprekidnih na segmentu realnih brojeva dana su u teoremu o ekstremnim vrijednostima, teoremu o međuvrijednostima i Riemannovom teoremu koji kaže da su takve funkcije i integrabilne na segmentu na kojem su neprekidne. Osim toga, takve funkcije se mogu po volji aproksimirati polinomom.

Skup funkcija neprekidnih na nekom određenom segmentu realnih brojeva primjer je realnog vektorskog prostora (gdje se na funkcije gleda kao na jedinke, kao na vektore).

Vidi još[uredi VE | uredi]

Izvori[uredi VE | uredi]

  1. 1,0 1,1 1,2 Svetozar Kurepa: Matematička analiza 2 funkcije jedne varijable, Tehnička knjiga, Zagreb, 1971.
  2. Svetozar Kurepa: Matematička analiza 3 funkcije više varijabli, Tehnička knjiga, Zagreb, 1975. (str. 325)