Suradnik:Conquistador/inkubator

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretraživanje
Ovo je članak o evoluciji u biologiji. Za ostala značenja vidi evoluciju (razdvojbu).
Za opće pristupačan i manje tehnički uvod u temu vidi uvod u evoluciju.

Evolucija (lat. evolutio: razvoj, razvitak), promjena u naslijeđenim karakteristikama bioloških populacija tijekom sukcesivnih generacija. Evolucijski procesi proizvode raznolikost na svakoj razini biološke organizacije uključujući vrste, individualne organizme i molekule poput DNA i proteina.[1]

Sav život na Zemlji potječe od posljednjeg univerzalnog pretka koji je živio prije približno 3,8 milijarda godina. Opetovana specijacija i divergencija života mogu se izvesti iz zajedničkih skupova biokemijskih i morfoloških crta, odnosno iz zajedničkih sekvencija DNA.[2] Ove homologne crte i sekvencije sličnije su među vrstama koje dijele recentnijeg zajedničkog pretka a mogu se rabiti za rekonstrukciju evolucijskih povijesti rabeći kako postojeće vrste tako i fosilne zapise. Postojeći uzorci bioraznolikosti oblikovani su kako specijacijom tako i ekstinkcijom, tj. izumiranjem.[3]

Charles Darwin prvi je formulirao znanstveni argument za teoriju evolucije posredstvom prirodne selekcije. Evolucija prirodnom selekcijom proces je izveden iz triju činjenica o populacijama: 1) više se potomaka rađa od onih koji mogu preživjeti, 2) crte variraju među jedinkama, što dovodi do različitih stopa preživljenja i razmnožavanja, i 3) razlike su u crtama heritabilne.[4] Stoga kad članovi neke populacije umru, njih nadomješta potomstvo roditeljâ koje je bolje adaptirano da preživi i razmnoži se u okolišu u kojem se odigrava prirodna selekcija. Ovaj proces stvara i čuva crte koje su naizgled prikladne za funkcionalne uloge koje izvode.[5] Prirodna je selekcija jedini poznati uzrok adaptacije, ali ne i jedini poznati uzrok evolucije. Ostali, neadaptivni uzroci evolucije uključuju mutaciju i genski drift.[6]

U ranom 20. stoljeću genetika je kroz disciplinu populacijske genetike bila integrirana s Darwinovom teorijom evolucije prirodnom selekcijom. Važnost prirodne selekcije kao uzroka evolucije bila je prihvaćena u ostalim granama biologije. Štoviše, prethodno smatrane ideje o evoluciji poput ortogeneze i "napretka" postale su opsoletne.[7] Znanstvenici nastavljaju proučavati razne aspekte evolucije oblikovanjem i testiranjem hipoteza, konstrukcijom znanstvenih teorija, uporabom opservacijskih podataka i izvođenjem eksperimenata kako na terenu tako i u laboratoriju. Biolozi se slažu da je descendencija s modifikacijama jedna od najpouzdanije utvrđenih činjenica u znanosti.[8] Otkrića u evolucijskoj biologiji značajno su utjecala ne samo na tradicionalne grane biologije nego i na ostale akademske discipline (npr. antropologiju i psihologiju) te na društvo općenito.[9][10]

Povijest evolucijske misli[uredi VE | uredi]

Za daljnje informacije vidi povijest evolucijske misli.

Prijedlog da jedan tip životinje može postati od neke životinje drugog tipa može se pronaći već u nekih od prvih predsokratovskih grčkih filozofa poput Anaksimandra i Empedokla.[11][12] Takvi su prijedlozi opstali sve do rimskih vremena. Pjesnik i filozof Lukrecije slijedio je Empedokla u svojem remek-djelu De rerum natura.[13][14] Nasuprot ovim materijalističkim nazorima Aristotel je sve prirodne stvari, ne samo one žive, smatrao nesavršenim aktualizacijama različitih fiksnih prirodnih mogućnosti znanih kao "forme", "ideje" ili (u latinskim prijevodima) "vrste" (lat. species).[15][16] To je bio dio njegova teleološkog shvaćanja prirode u kojoj sve stvari imaju namijenjenu ulogu kojom sudjeluju u božanstvenu kozmičkom redu. Varijacije ove ideje postale su standardno poimanje u srednjem vijeku te su integrirane u kršćanski nauk iako Aristotel nije zahtijevao da stvarni tipovi životinja uvijek recipročno odgovaraju egzaktnim metafizičkim formama i specifično je dao primjere kako novi tipovi živih bića mogu nastati.[17]

U 17. stoljeću nova je metoda moderne znanosti odbacila Aristotelov pristup i nastojala je objasniti prirodne fenomene s pomoću fizičkih zakona, koji su bili jednaki za sve vidljive stvari, te nije trebala pretpostavljati nikakve fiksne prirodne kategorije ili nekakav božanstven kozmički red. No ovaj je pristup bio spor da bi pustio korijenje u biološkim znanostima, koje su postale posljednji bastion koncepta fiksnih prirodnih tipova. John Ray rabio je jedan od prethodnih općenitijih termina za fiksne prirodne tipove, "vrstu" (engl. species), koji je primijenio na životinjske i biljne tipove, iako je striktno identificirao svaki tip živog bića kao vrstu i predložio da se svaka vrsta može definirati obilježjima koja se u svakoj generaciji perpetuiraju.[18] Ove je vrste dizajnirao Bog, no razlike među njima bile su uzrokovane lokalnim uvjetima. Biološka klasifikacija koju je 1735. godine uveo Carolus Linnaeus također je na vrste gledala kao da su fiksne u skladu s božanstvenim planom.[19]

Godine 1842. Charles Darwin ispisao je svoju prvu skicu onoga što će postati O porijeklu vrsta.[20]

Ostali su prirodoslovci toga vremena spekulirali o evolucijskoj promjeni vrsta tijekom vremena u skladu s prirodnim zakonima. Maupertuis je 1751. pisao o prirodnim modifikacijama koje se zbivaju tijekom razmnožavanja i koje se akumuliraju tijekom mnogo generacija da bi proizvele nove vrste.[21] Buffon je sugerirao da bi vrste mogle degenerirati u različite organizme, a Erasmus Darwin predložio je da bi sve toplokrvne životinje mogle potjecati od jednog mikroorganizma (ili "filamenta").[22] Prva cjelovita evolucijska shema bila je Lamarckova teorija "transmutacije" iz 1809. godine[23] koja je predviđala spontanu generaciju kojom se neprekidno stvaraju jednostavni oblici života koji su razvijali sve veću kompleksnost u paralelnim lozama s inherentno progresivnom tendencijom, a da su se na lokalnoj razini ove loze adaptirale na okoliš nasljeđivanjem promjena koje su bile uzrokovane uporabom ili neuporabom u roditeljâ.[24][25] (Potonji je proces poslije nazvan lamarkizam.)[24][26][27][28] Ove su ideje istaknuti prirodoslovci osudili kao spekulaciju kojoj manjka empirijski oslonac. Posebno je Georges Cuvier ustrajao na tome da su vrste bile nesrodne i fiksne, a njihove su sličnosti odražavale božanstven dizajn za funkcionalne potrebe. U međuvremenu je Rayjeve ideje benevolentna dizajna William Paley razvio u prirodnu teologiju kojom je kompleksne adaptacije predložio kao dokaz božanstvena dizajna, a veoma ga je cijenio Charles Darwin.[29][30][31]

Kritičan raskid s konceptom fiksnih vrsta u biologiji počeo je s teorijom evolucije prirodnom selekcijom koju je formulirao Charles Darwin. Dijelom pod utjecajem Eseja o principu populacije Thomasa Roberta Malthusa, Darwin je primijetio da će rast populacije voditi k "borbi za egzistenciju" u kojoj će povoljne varijacije prevladati dok će ostale ičeznuti. Svaka generacija, mnogi potomci neće uspjeti preživjeti do reproduktivne dobi zbog ograničenih resursa. To bi moglo objasniti raznolikost životinja i biljaka nastalih od zajedničkog pretka djelovanjem prirodnih zakona koji jednako djeluju za sve tipove stvari.[32][33][34][35] Darwin je razvijao svoju teoriju "prirodne selekcije" od 1838. nadalje dok mu Alfred Russel Wallace nije poslao sličnu teoriju 1858. godine. Obojica su predstavila svoje zasebne referate pred Linneovim društvom u Londonu.[36] Pri kraju 1859. godine Darwinovo izdanje O porijeklu vrsta objasnilo je prirodnu selekciju u detalje i na način koji je vodio sve većem prihvaćanju darvinističke evolucije. Thomas Henry Huxley primijenio je Darwinove ideje na ljude rabeći paleontologiju i komparativnu anatomiju da podastrije čvrst dokaz da ljudi i čovjekoliki majmuni dijele zajedničkog pretka. Neki su zbog toga bili uznemireni jer se time impliciralo da ljudi nemaju posebno mjesto u svemiru.[37]

Precizni mehanizmi reproduktivne heritabilnosti i porijekla novih crta ostali su misterij. Da bi tomu doskočio, Darwin je razvio svoju provizornu teoriju pangeneze.[38] Godine 1865. Gregor Mendel priopćio je da se crte nasljeđuju na predvidiv način s pomoću neovisne kombinacije i segregacije elemenata (poslije znanih kao geni). Mendelovi zakoni nasljeđivanja naposljetku su nadomjestili većinu Darwinove teorije pangeneze.[39] August Weismann učinio je važnu razliku između tjelesnih zametnih stanica (spermija i jajašca) i somatskih stanica demonstrirajući da se naslijeđe prenosi jedino putem zametne linije. Hugo de Vries spojio je Darwinovu teoriju pangeneze s Weismannovom distinkcijom zametnih i somatskih stanica te predložio da su Darwinovi pangeni koncentrirani u staničnoj jezgri odakle, nakon što budu eksprimirani, prelaze u citoplazmu da bi izmijenili staničnu strukturu. De Vries je također bio jedan od istraživača koji su učinili Mendelov rad općepoznatim vjerujući da mendelovske crte odgovaraju prijenosu heritabilnih varijacija duž zametne linije.[40] Da bi objasnio kako nastaju nove varijante, de Vries je razvio teoriju mutacije koja je dovela do privremena raskola između onih koji su prihvaćali darvinističku evoluciju i biometričara koji su se udružili s de Vriesom.[25][41][42] Na prijelazu u 20. stoljeće pioniri na polju populacijske genetike poput J. B. S. Haldanea, Sewalla Wrighta i Ronalda Fishera postavili su temelje evolucije na robusnu statističku filozofiju. Lažno proturječje između Darwinove teorije, genskih mutacija i Mendelova nasljeđivanja time je naposljetku bilo izglađeno.[43]

Tijekom 1920-ih i 1930-ih moderna evolucijska sinteza povezala je prirodnu selekciju, teoriju mutacije i Mendelovo nasljeđivanje u jedinstvenu teoriju koja se mogla općenito primijeniti na svaku granu biologije. Moderna je sinteza mogla uzorke promatrane među vrstama u populacijama objasniti s pomoću fosilnih prijelaza u paleontologiji, pa i složenih staničnih mehanizama u razvojnoj biologiji.[25][44] Objava strukture DNA, koju su 1953. godine učinili James Watson i Francis Crick, demonstrirala je fizičku osnovu nasljeđivanja.[45] Molekularna biologija unaprijedila je naše razumijevanje odnosa genotipa i fenotipa. Napredci su također učinjeni u filogenijskoj sistematici mapirajući prijelaz crta u komparativan i provjerljiv radni okvir s pomoću objave i uporabe evolucijskih drva.[46][47] Godine 1973. evolucijski biolog Theodosius Dobzhansky napisao je da "ništa u biologiji nema smisla osim u svjetlu evolucije" jer je ona rasvijetlila odnose onoga što se isprva doimalo razjedinjenim činjenicama u prirodoslovlju u koherentan eksplikacijski korpus znanja koji opisuje i predviđa mnoge primjetljive činjenice o životu na ovom planetu.[48]

Otada je moderna sinteza dodatno proširena da bi objasnila biološke fenomene duž čitave i integrativne ljestvice biološke hijerarhije, od gena do vrste. Ovo je proširenje imenovano "eco-evo-devo" (od engl. ecological evolutionary developmental biology: ekološka evolucijska razvojna biologija).[49][49][50][51]

Naslijeđe[uredi VE | uredi]

Za daljnje informacije vidi uvod u genetiku, genetiku, naslijeđe i reakcijske norme.
Struktura DNA. Baze su u središtu, okružene lancima fosfat-šećera u dvostrukoj uzvojnici.

Evolucija se u organizmima zbiva zbog promjena u heritabilnim crtama – posebnim karakteristikama nekog organizma. U ljudi je, na primjer, boja očiju nasljedna karakteristika i pojedinac može naslijediti "smeđooku crtu" od jednog od svojih roditelja.[52] Nasljedne su crte pod kontrolom gena a čitav se skup gena unutar genoma nekog organizma zove njegovim genotipom.[53]

Čitav skup primjetljivih crta koje sačinjavaju strukturu i ponašanje nekog organizma zove se njegovim fenotipom. Te crte nastaju zbog interakcije njegova genotipa s okolišem.[54] Rezultat je toga da se mnogi aspekti fenotipa nekog organizma ne nasljeđuju. Na primjer, preplanula koža nastaje zbog interakcije genotipa neke osobe i Sunčeva svjetla; stoga se osunčanost ne prenosi dalje na njezine potomke. Neke osobe ipak preplanu lakše od drugih zbog razlika u genotipovima; izvanredan su primjer osobe s nasljednom crtom albinizma jer njihova koža uopće ne preplane i vrlo je osjetljiva na sunčane opekline.[55]

Nasljedne se crte prenose s jedne generacije na drugu putem DNA, molekule koja kodira gensku informaciju.[53] DNA je dugačak polimer sastavljen od četiriju tipova baza. Sekvencija baza duž pojedine molekule DNA specificira gensku informaciju na sličan način na koji neka sekvencija slova izriče neku rečenicu. Prije nego što se stanica podijeli, DNA se kopira tako da svaka od dviju nastalih stanica naslijedi sekvenciju DNA. Dijelovi molekule DNA koji specificiraju jedinstvenu funkcionalnu jedinicu zovu se geni; različiti geni imaju različite sekvencije baza. Unutar stanica dugi lanci DNA formiraju kondenzirane strukture zvane kromosomi. Specifična lokacija neke sekvencije DNA unutar kromosoma poznata je kao lokus. Ako sekvencija DNA na nekom lokusu varira među jedinkama, različite se forme te sekvencije zovu aleli. Sekvencije se DNA mogu mijenjati mutacijama proizvodeći nove alele. Ako se mutacija dogodi unutar gena, novi alel može utjecati na crtu koju taj gen kontrolira izmjenjujući fenotip organizma.[56] No premda ova jednostavna podudarnost između nekog alela i neke crte djeluje u nekim slučajevima, većina je crta kompleksnija i pod kontrolom višestrukih interaktivnih gena.[57][58]

Nedavni su pronalasci potvrdili važne primjere heritabilnih promjena koje se ne mogu objasniti promjenama u sekvenciji nukleotida u DNA. Ti su fenomeni klasificirani kao sustavi epigenetičkog nasljeđivanja.[59] Metilacija DNA koja markira kromatin, samoodržive metaboličke petlje, gensko prigušenje interferencijom RNA i trodimenzionalne konformacije proteina (poput priona) područja su u kojima su sustavi epigenetičkog nasljeđivanja otkriveni na organizmičkoj razini.[60][61] Razvojni biolozi predlažu da kompleksne interakcije u genskim mrežama i komunikacija među stanicama mogu dovesti do heritabilnih varijacija koje mogu činiti podlogu jednom dijelu mehanike u razvojnoj plastičnosti i kanalizaciji.[62] Heritabilnost se također može zbivati u još krupnijim mjerilima. Na primjer, ekološko nasljeđivanje u procesu konstrukcije niše definirano je pravilnim i ponovljenim aktivnostima organizama u njihovu okolišu. To generira ostavštinu efekata koji se modificiraju i povratno sprežu u selekcijskom režimu naknadnih generacija. Potomci nasljeđuju gene i okolišne karakteristike generirane ekološkom akcijom predaka.[63] Ostali primjeri heritabilnosti u evoluciji koji nisu pod direktnom kontrolom gena uključuju nasljeđivanje kulturnih crta i simbiogenezu.[64][65]

Varijacija[uredi VE | uredi]

Za daljnje informacije vidi gensku raznolikost i populacijsku genetiku.

Fenotip individualna organizma rezultat je kako njegova genotipa tako i utjecaja okoliša u kojem živi. Znatan dio varijacije u fenotipovima u nekoj populaciji uzrokovan je razlikama u njezinim genotipovima.[58] Moderna evolucijska sinteza definira evoluciju kao promjenu te genske varijacije tijekom vremena. Frekvencija nekog pojedinačnog alela postat će više ili manje prevalentna u odnosu na druge forme tog gena. Varijacija iščezava kada nov alel dosegne točku fiksacije – kada on ili iščezne iz populacije ili u potpunosti nadomjesti predački alel.[66]

Prirodna će selekcija jedino uzrokovati evoluciju ako postoji dovoljno genske varijacije u populaciji. Prije otkrića mendelovske genetike uobičajena je hipoteza bilo miješano nasljeđivanje. No s miješanim nasljeđivanjem genska bi varijanca ubrzo nestala što bi evoluciju prirodnom selekcijom učinilo nevjerojatnom. Hardy-Weinbergov princip pruža rješenje načina na koji se varijacija održava u populaciji Mendelovim nasljeđivanjem. Frekvencije alela (varijacije u genu) ostat će konstantne u odsustvu selekcije, mutacije, migracije i genskog drifta.[67]

Varijacija nastaje zbog mutacija genskog materijala, reorganizacije gena tijekom spolnog razmnožavanja i migracije između populacija (genski tok). Unatoč konstantnu uvođenju nove varijacije zbog mutacije i genskog toka, većina je genoma neke vrste identična u svim jedinkama te vrste.[68] No čak i relativno male razlike u genotipu mogu dovesti do dramatičnih razlika u fenotipu: na primjer, čimpanze i ljudi se razlikuju samo u oko 5 % svojeg genoma.[69]

Mutacija[uredi VE | uredi]

Za daljnje informacije vidi mutaciju.
Duplikacija dijela kromosoma.

Mutacije su promjene u sekvenciji DNA staničnog genoma. Kada se mutacije dogode, one mogu ili biti bez ikakva efekta izmjenjujući proizvod nekog gena ili spriječiti gen da funkcionira. Na osnovi proučavanja mušice Drosophila melanogaster pretpostavlja se da ako mutacija promijeni protein koji gen proizvodi, to će vjerojatno biti štetno, oko 70 % takvih mutacija imat će štetne efekte, a preostale će biti ili neutralne ili slabo povoljne.[70]

Mutacije mogu uključivati duplikaciju velikih odsječaka kromosoma (obično putem genske rekombinacije) kojom se mogu uvesti nove kopije gena u genom.[71] Dodatne kopije gena glavni su izvor sirova materijala potrebna da se razviju novi geni.[72] Ovo je važno zato što se većina novih gena razvija unutar genskih porodica od već postojećih gena koje dijele zajednički preci.[73] Na primjer, čovječje oko rabi četiri gena da stvori strukture koje osjećaju svjetlo: tri za obojeni vid i jedan za noćni vid; sva su četiri potekla od jednog ancestralnog gena.[74]

Novi geni mogu nastati od ancestralnog gena kad duplikatna kopija mutira i stekne novu funkciju. Ovaj je postupak lakši jednom kad se gen duplicirao jer povećava redundanciju sustava; jedan gen u paru može steći novu funkciju dok druga kopija nastavlja izvoditi svoju originalnu funkciju.[75][76] Ostali tipovi mutacija mogu čak stvoriti potpuno nove gene od prethodno nekodirajuće DNA.[77][78]

Stvaranje novih gena može također uključivati duplikaciju manjih dijelova nekoliko gena pri čemu se ovi fragmenti potom rekombiniraju radi formiranja novih kombinacija s novim funkcijama.[79][80] Pri sklapanju novih gena nakon miješanja već postojećih dijelova, domene djeluju kao moduli s jednostavnim neovisnim funkcijama, koji se mogu zajedno izmiješati radi proizvodnje novih kombinacija s novim i kompleksnim funkcijama.[81] Na primjer, poliketid-sintaze su veliki enzimi koji tvore antibiotike; sadrže i do stotinu neovisnih domena od kojih svaka katalizira jedan korak u čitavu procesu, nalik koraku na tekućoj vrpci.[82]

Spol i rekombinacija[uredi VE | uredi]

Za daljnje informacije vidi spolno razmnožavanje, gensku rekombinaciju i evoluciju spolnog razmnožavanja.

U nespolnih organizama geni se nasljeđuju zajedno ili vezano zato što se ne mogu miješati s genima ostalih organizama tijekom reprodukcije. Nasuprot tomu, potomak spolnih organizama sadrži nasumičnu mješavinu kromosoma svojih roditelja koja nastaje neovisnom segregacijom. U srodnu procesu zvanu homologna rekombinacija spolni organizmi razmjenjuju DNA između dvaju podudarnih kromosoma.[83] Rekombinacija i segregacija ne mijenjaju alelne frekvencije, već umjesto toga mijenjaju način pridruživanja pojedinih alela, proizvodeći potomke s novim kombinacijama alela.[84] Spol obično povećava gensku varijaciju i može ubrzati stopu evolucije.[85][86]

Genski tok[uredi VE | uredi]

Za daljnje informacije vidi genski tok.

Genski tok jest razmjena genâ među populacijama i među vrstama.[87] Stoga on može biti izvor varijacije koja je nova za neku populaciju ili neku vrstu. Genski tok mogu uzrokovati gibanje jedinaka među razdvojenim populacijama organizama, kao što ga uzrokuje gibanje miševa među kontinentalnim i obalnim populacijama ili gibanje peluda među populacijama trava koje su tolerantne na teške metale i trava koje su osjetljive na njih.

Transfer gena među vrstama uključuje oblikovanje hibridnih organizama i horizontalni transfer gena. Horizontalni transfer gena jest transfer genskog materijala iz jednog organizma u drugi organizam koji nije njegov potomak; najčešći je među bakterijama.[88] U medicini, on doprinosi širenju antibiotičke rezistencije jer kad jedna bakterija stekne gene rezistencije, ona ih brzo transferira na ostale vrste.[89] Zabilježen je horizontalni transfer gena iz bakterija u eukariote kao što su kvasac Saccharomyces cerevisiae i kineski žižak Callosobruchus chinensis.[90][91] Primjer transferâ velikih razmjera jesu eukariotski bdeloidni kolnjaci, koji su primili niz gena od bakterija, gljiva i biljaka.[92] Virusi također mogu prenositi DNA među organizmima omogućujući čak transfer gena kroz biološke domene.[93]

Transfer gena velikih razmjera također se zbio između predaka eukariotskih stanica i bakterija, tijekom akvizicije kloroplasta i mitohondrija. Vjerojatno su i sami eukarioti nastali horizontalnim transferima gena između bakterija i arheja.[94]

Mehanizmi[uredi VE | uredi]

Mutacija poslije koje slijedi prirodna selekcija rezultira populacijom s tamnijom koloracijom.

Iz neodarvnističke perspektive evolucija se zbiva kada postoje promjene u frekvencijama alelâ u populaciji organizama koji se međusobno razmnožavaju.[67] Na primjer, alel za crnu boju u populaciji noćnih leptira postaje sve uobičajeniji. Mehanizmi koji mogu dovesti do promjena u frekvenciji alela uključuju prirodnu selekciju, genski drift, genski autostop, mutaciju i genski tok.

Prirodna selekcija[uredi VE | uredi]

Za daljnje informacije vidi prirodnu selekciju i sposobnost opstanka.

Evolucija posredstvom prirodne selekcije jest proces kojim genske mutacije koje unapređuju reprodukciju postaju i ostaju sve uobičajenije u sukcesivnim generacijama populacije. Ovo se često zove "očigledan" mehanizam jer nužno slijedi iz triju jednostavnih činjenica:

  • Heritabilna varijacija postoji u populacijama organizama.
  • Organizmi stvaraju veće potomstvo od onoga koje može preživjeti.
  • Ovi potomci variraju u svojoj mogućnosti da prežive i reproduciraju se.

Ovi uvjeti među organizmima stvaraju natjecanje za preživljenje i reprodukciju. Posljedično tomu, organizmi s crtama koje im daju prednost nad njihovim natjecateljima prenose dalje ove povoljne crte, dok se crte koje ne nose nikakvu prednost ne prenose na sljedeću generaciju.[95]

Centralni koncept prirodne selekcije jest evolucijska sposobnost opstanka organizma.[96] Sposobnost opstanka mjeri se mogućnošću organizma da preživi i reproducira se, što određuje veličinu njegova genskog doprinosa u sljedećoj generaciji.[96] No sposobnost opstanka nije jednaka ukupnom broju potomaka: umjesto toga sposobnost opstanka naznačena je udjelom sljedećih generacija koje nose gene organizma.[97] Na primjer, ako bi organizam mogao dostatno preživjeti i brzo se reproducirati, ali bi njegovi potomci bili premaleni i preslabi da prežive, taj bi organizam malo genski doprinio budućim generacijama i stoga bi imao nisku sposobnost opstanka.[96]

Ako jedan alel poveća sposobnost opstanka više od ostalih alela toga gena, onda će sa svakom generacijom ovaj alel postati uobičajeniji u toj populaciji. Za takve se crte kaže da su "selektirane za". Primjeri crta koje mogu povećati sposobnost opstanka jesu unaprijeđeno preživljenje i povećan fekunditet. Suprotno tomu, smanjena sposobnost opstanka uzrokovana posjedovanjem manje povoljna ili manje pogubna alela rezultira time da taj alel postaje sve rjeđi — oni su "selektirani protiv".[98] Veoma je važno da sposobnost opstanka nekog alela nije fiksna karakteristika; ako se okoliš promijeni, prethodno neutralne ili štetne crte mogu postati korisne, a prethodno korisne crte postati štetne.[56] No čak i ako se smjer selekcije promijeni na taj način, crte koje su u prošlosti izgubljene ne moraju reevoluirati u identičan oblik (vidi Dollov zakon).[99][100]

Dijagram prikazuje tri tipa selekcije: 1. disruptivnu, 2. stabilizacijsku i 3. direkcijsku selekciju.

Prirodna selekcija unutar neke populacije za neku crtu koja može varirati duž nekog raspona vrijednosti, kao što je visina, može se kategorizirati u tri različita tipa. Prvi tip čini direkcijska selekcija koja označuje promjenu u prosječnoj vrijednosti neke crte tijekom vremena — na primjer, organizmi polagano postaju viši.[101] Drugi tip čini disruptivna selekcija ili selekcija za ekstremne vrijednosti crte koja često rezultira u dvjema različitim vrijednostima koje postaju najuobičajenije, sa selekcijom protiv prosječne vrijednosti. To bi se zbilo onda kada ili niski ili visoki organizmi imaju neku prednost, no nemaju je oni srednje visine. Konačno, u stabilizacijskoj selekciji postoji selekcija protiv ekstremnih vrijednosti crte s obaju krajeva, koja uzrokuje smanjenje varijance oko prosječne vrijednosti i manju raznolikost.[95][102] To bi, na primjer, uzrokovalo da organizmi polagano postanu svi jednake visine.

Specijalni slučaj prirodne selekcije jest spolna (seksualna) selekcija, koja označuje selekciju bilo koje crte koja povećava uspjeh u parenju povećanjem privlačnosti nekog organizma potencijalnim spolnim partnerima.[103] Crte koje su evoluirale kroz spolnu selekciju naročito su istaknute među mužjacima nekoliko životinjskih vrsta. Iako imaju spolnu prednost, crte poput golema rogovlja, poziva na parenje, velika tjelesna veličina i žarke boje često privlače predaciju, koja kompromitira preživljenje individualnih mužjaka.[104][105] Ovaj nedostatak u preživljenju uravnotežen je većim reproduktivnim uspjehom mužjaka koji pokazuju ove teško krivotvorive, spolno selektirane crte.[106]

Prirodna selekcija najopćenitije govoreći čini prirodu mjerom po kojoj će jedinke i individualne crte više ili manje vjerojatno preživjeti. "Priroda" u ovom smislu označuje ekosustav, to jest sustav u kojem su organizmi u interakciji sa svim ostalim elementima, i fizičkim i biološkim, u njihovu lokalnu okolišu. Eugene Odum, osnivač ekologije, definirao je ekosustav: "Svaka jedinica koja uključuje sve organizme... na zadanu području koji su u interakciji s fizičkim okolišom tako da protok energije vodi k jasno definiranoj trofičkoj strukturi, biotičkoj raznolikosti i ciklusima tvari (tj. izmjeni tvari između živih i neživih dijelova) unutar sustava."[107] Svaka populacija unutar nekog ekosustava zauzima distiknktivnu nišu, ili poziciju, s distinktivnim odnosima prema ostalim dijelovima sustava. Ovi odnosi uključuju životnu povijest organizma, njegovu poziciju u hranidbenom lancu i njegov geografski areal. Ovo široko razumijevanje prirode omogućuje znanstvenicima ocrtavanje specifičnih sila koje, sve zajedno, tvore prirodnu selekciju.

Prirodna selekcija može djelovati na različitim razinama organizacije kao što su geni, stanice, individualni organizmi, grupe organizama i vrste.[108][109][110] Selekcija može djelovati na više razina simultano.[111] Primjer selekcije koja se zbiva ispod razine individualna organizma jesu geni zvani transpozoni, koji se mogu replicirati i širiti diljem genoma.[112] Selekcija na razini iznad jedinke, kao što je grupna selekcija, može omogućiti evoluciju kooperacije, što je raspravljeno dalje u tekstu.[113]

Pristrana mutacija[uredi VE | uredi]

Osim što je glavni izvor varijacija, mutacija može također funkcionirati kao mehanizam evolucije kada na molekularnoj razini postoje različite vjerojatnosti da se dogode različite mutacije, proces poznat kao mutacijska pristranost (engl. mutation bias).[114] Ako dva genotipa, na primjer jedan s nukleotidom G i drugi s nukleotidom A na istoj poziciji, imaju jednaku sposobnost opstanka, ali se mutacija od G k A zbiva češće od mutacije od A ka G, genotipi s A težit će evoluirati.[115] Različite mutacijske pristranosti u inserciji nasuprot deleciji u različitim taksonima mogu voditi evoluciji različitih genomskih veličina.[116][117] Razvojne ili mutacijske pristranosti također su promatrane u morfološkoj evoluciji.[118][119] Na primjer, po teoriji evolucije prvo fenotipa mutacije mogu naposljetku uzrokovati gensku asimilaciju crtâ koje su prethodno bile inducirane okolišem.[120][121]


Mutation bias effects are superimposed on other processes. If selection would favor either one out of two mutations, but there is no extra advantage to having both, then the mutation that occurs the most frequently is the one that is most likely to become fixed in a population.[122][123] Mutations leading to the loss of function of a gene are much more common than mutations that produce a new, fully functional gene. Most loss of function mutations are selected against. But when selection is weak, mutation bias towards loss of function can affect evolution.[124] For example, pigments are no longer useful when animals live in the darkness of caves, and tend to be lost.[125] This kind of loss of function can occur because of mutation bias, and/or because the function had a cost, and once the benefit of the function disappeared, natural selection leads to the loss. Loss of sporulation ability in a bacterium during laboratory evolution appears to have been caused by mutation bias, rather than natural selection against the cost of maintaining sporulation ability.[126] When there is no selection for loss of function, the speed at which loss evolves depends more on the mutation rate than it does on the effective population size,[127] indicating that it is driven more by mutation bias than by genetic drift.

Genski drift[uredi VE | uredi]

Za daljnje informacije vidi genski drift i efektivna veličina populacije.
Simulation of genetic drift of 20 unlinked alleles in populations of 10 (top) and 100 (bottom). Drift to fixation is more rapid in the smaller population.

Genetic drift is the change in allele frequency from one generation to the next that occurs because alleles are subject to sampling error.[128] As a result, when selective forces are absent or relatively weak, allele frequencies tend to "drift" upward or downward randomly (in a random walk). This drift halts when an allele eventually becomes fixed, either by disappearing from the population, or replacing the other alleles entirely. Genetic drift may therefore eliminate some alleles from a population due to chance alone. Even in the absence of selective forces, genetic drift can cause two separate populations that began with the same genetic structure to drift apart into two divergent populations with different sets of alleles.[129]

It is usually difficult to measure the relative importance of selection and neutral processes, including drift.[130] The comparative importance of adaptive and non-adaptive forces in driving evolutionary change is an area of current research.[131]

The neutral theory of molecular evolution proposed that most evolutionary changes are the result of the fixation of neutral mutations by genetic drift.[6] Hence, in this model, most genetic changes in a population are the result of constant mutation pressure and genetic drift.[132] This form of the neutral theory is now largely abandoned, since it does not seem to fit the genetic variation seen in nature.[133][134] However, a more recent and better-supported version of this model is the nearly neutral theory, where a mutation that would be neutral in a small population is not necessarily neutral in a large population.[95] Other alternative theories propose that genetic drift is dwarfed by other stochastic forces in evolution, such as genetic hitchhiking, also known as genetic draft.[128][135][136]

The time for a neutral allele to become fixed by genetic drift depends on population size, with fixation occurring more rapidly in smaller populations.[137] The number of individuals in a population is not critical, but instead a measure known as the effective population size.[138] The effective population is usually smaller than the total population since it takes into account factors such as the level of inbreeding and the stage of the lifecycle in which the population is the smallest.[138] The effective population size may not be the same for every gene in the same population.[139]

Genski autostop[uredi VE | uredi]

Za daljnje informacije vidi genski autostop, Hill-Robertsonov efekt, selektivni pomet i genski drift.

Recombination allows alleles on the same strand of DNA to become separated. However, the rate of recombination is low (approximately two events per chromosome per generation). As a result, genes close together on a chromosome may not always be shuffled away from each other and genes that are close together tend to be inherited together, a phenomenon known as linkage.[140] This tendency is measured by finding how often two alleles occur together on a single chromosome compared to expectations, which is called their linkage disequilibrium. A set of alleles that is usually inherited in a group is called a haplotype. This can be important when one allele in a particular haplotype is strongly beneficial: natural selection can drive a selective sweep that will also cause the other alleles in the haplotype to become more common in the population; this effect is called genetic hitchhiking or genetic draft.[141] Genetic draft caused by the fact that some neutral genes are genetically linked to others that are under selection can be partially captured by an appropriate effective population size.[135]

Genski tok[uredi VE | uredi]

Za daljnje informacije vidi genski tok, hibrid (biologija) i horizontalni prijenos gena.

Gene flow is the exchange of genes between populations and between species.[87] The presence or absence of gene flow fundamentally changes the course of evolution. Due to the complexity of organisms, any two completely isolated populations will eventually evolve genetic incompatibilities through neutral processes, as in the Bateson-Dobzhansky-Muller model, even if both populations remain essentially identical in terms of their adaptation to the environment.

If genetic differentiation between populations develops, gene flow between populations can introduce traits or alleles which are disadvantageous in the local population and this may lead to organism within these populations to evolve mechanisms that prevent mating with genetically distant populations, eventually resulting in the appearance of new species. Thus, exchange of genetic information between individuals is fundamentally important for the development of the biological species concept (BSC).

During the development of the modern synthesis, Sewall Wright's developed his shifting balance theory that gene flow between partially isolated populations was an important aspect of adaptive evolution.[142] However, recently there has been substantial criticism of the importance of the shifting balance theory.[143]

Ishodi[uredi VE | uredi]

Evolution influences every aspect of the form and behaviour of organisms. Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection. These adaptations increase fitness by aiding activities such as finding food, avoiding predators or attracting mates. Organisms can also respond to selection by co-operating with each other, usually by aiding their relatives or engaging in mutually beneficial symbiosis. In the longer term, evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed.

These outcomes of evolution are sometimes divided into macroevolution, which is evolution that occurs at or above the level of species, such as extinction and speciation and microevolution, which is smaller evolutionary changes, such as adaptations, within a species or population.[144] In general, macroevolution is regarded as the outcome of long periods of microevolution.[145] Thus, the distinction between micro- and macroevolution is not a fundamental one – the difference is simply the time involved.[146] However, in macroevolution, the traits of the entire species may be important. For instance, a large amount of variation among individuals allows a species to rapidly adapt to new habitats, lessening the chance of it going extinct, while a wide geographic range increases the chance of speciation, by making it more likely that part of the population will become isolated. In this sense, microevolution and macroevolution might involve selection at different levels – with microevolution acting on genes and organisms, versus macroevolutionary processes such as species selection acting on entire species and affecting their rates of speciation and extinction.{{sfn|Gould|2002|pp=657–658}}[147][148]

A common misconception is that evolution has goals or long-term plans; realistically however, evolution has no long-term goal and does not necessarily produce greater complexity.[149][150] Although complex species have evolved, they occur as a side effect of the overall number of organisms increasing and simple forms of life still remain more common in the biosphere.[151] For example, the overwhelming majority of species are microscopic prokaryotes, which form about half the world's biomass despite their small size,[152] and constitute the vast majority of Earth's biodiversity.[153] Simple organisms have therefore been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day, with complex life only appearing more diverse because it is more noticeable.[154] Indeed, the evolution of microorganisms is particularly important to modern evolutionary research, since their rapid reproduction allows the study of experimental evolution and the observation of evolution and adaptation in real time.[155][156]

Adaptacija[uredi VE | uredi]

Za više detalja o ovoj temi vidi adaptacija.
Homologous bones in the limbs of tetrapods. The bones of these animals have the same basic structure, but have been adapted for specific uses.

Adaptation is the process that makes organisms better suited to their habitat.[157][158] Also, the term adaptation may refer to a trait that is important for an organism's survival. For example, the adaptation of horses' teeth to the grinding of grass. By using the term adaptation for the evolutionary process and adaptive trait for the product (the bodily part or function), the two senses of the word may be distinguished. Adaptations are produced by natural selection.[159] The following definitions are due to Theodosius Dobzhansky.

  1. Adaptation is the evolutionary process whereby an organism becomes better able to live in its habitat or habitats.[160]
  2. Adaptedness is the state of being adapted: the degree to which an organism is able to live and reproduce in a given set of habitats.[161]
  3. An adaptive trait is an aspect of the developmental pattern of the organism which enables or enhances the probability of that organism surviving and reproducing.[162]

Adaptation may cause either the gain of a new feature, or the loss of an ancestral feature. An example that shows both types of change is bacterial adaptation to antibiotic selection, with genetic changes causing antibiotic resistance by both modifying the target of the drug, or increasing the activity of transporters that pump the drug out of the cell.[163] Other striking examples are the bacteria Escherichia coli evolving the ability to use citric acid as a nutrient in a long-term laboratory experiment,[164] Flavobacterium evolving a novel enzyme that allows these bacteria to grow on the by-products of nylon manufacturing,[165][166] and the soil bacterium Sphingobium evolving an entirely new metabolic pathway that degrades the synthetic pesticide pentachlorophenol.[167][168] An interesting but still controversial idea is that some adaptations might increase the ability of organisms to generate genetic diversity and adapt by natural selection (increasing organisms' evolvability).[169][170][171][172][173]

A baleen whale skeleton, a and b label flipper bones, which were adapted from front leg bones: while c indicates vestigial leg bones, suggesting an adaptation from land to sea.[174]

Adaptation occurs through the gradual modification of existing structures. Consequently, structures with similar internal organisation may have different functions in related organisms. This is the result of a single ancestral structure being adapted to function in different ways. The bones within bat wings, for example, are very similar to those in mice feet and primate hands, due to the descent of all these structures from a common mammalian ancestor.[175] However, since all living organisms are related to some extent,[176] even organs that appear to have little or no structural similarity, such as arthropod, squid and vertebrate eyes, or the limbs and wings of arthropods and vertebrates, can depend on a common set of homologous genes that control their assembly and function; this is called deep homology.[177][178]

During evolution, some structures may lose their original function and become vestigial structures.[179] Such structures may have little or no function in a current species, yet have a clear function in ancestral species, or other closely related species. Examples include pseudogenes,[180] the non-functional remains of eyes in blind cave-dwelling fish,[181] wings in flightless birds,[182] and the presence of hip bones in whales and snakes.[174] Examples of vestigial structures in humans include wisdom teeth,[183] the coccyx,[179] the vermiform appendix,[179] and other behavioural vestiges such as goose bumps[184][185] and primitive reflexes.[186][187][188]

However, many traits that appear to be simple adaptations are in fact exaptations: structures originally adapted for one function, but which coincidentally became somewhat useful for some other function in the process.{{sfn|Gould|2002|pp=1235–1236}} One example is the African lizard Holaspis guentheri, which developed an extremely flat head for hiding in crevices, as can be seen by looking at its near relatives. However, in this species, the head has become so flattened that it assists in gliding from tree to tree—an exaptation.{{sfn|Gould|2002|pp=1235–1236}} Within cells, molecular machines such as the bacterial flagella[189] and protein sorting machinery[190] evolved by the recruitment of several pre-existing proteins that previously had different functions.[144] Another example is the recruitment of enzymes from glycolysis and xenobiotic metabolism to serve as structural proteins called crystallins within the lenses of organisms' eyes.[191][192]

An area of current investigation in evolutionary developmental biology is the developmental basis of adaptations and exaptations.[193] This research addresses the origin and evolution of embryonic development and how modifications of development and developmental processes produce novel features.[194] These studies have shown that evolution can alter development to produce new structures, such as embryonic bone structures that develop into the jaw in other animals instead forming part of the middle ear in mammals.[195] It is also possible for structures that have been lost in evolution to reappear due to changes in developmental genes, such as a mutation in chickens causing embryos to grow teeth similar to those of crocodiles.[196] It is now becoming clear that most alterations in the form of organisms are due to changes in a small set of conserved genes.[197]

Koevolucija[uredi VE | uredi]

Common Garter Snake (Thamnophis sirtalis sirtalis) which has evolved resistance to tetrodotoxin in its amphibian prey.
Za daljnje informacije vidi koevolucija.

Interactions between organisms can produce both conflict and co-operation. When the interaction is between pairs of species, such as a pathogen and a host, or a predator and its prey, these species can develop matched sets of adaptations. Here, the evolution of one species causes adaptations in a second species. These changes in the second species then, in turn, cause new adaptations in the first species. This cycle of selection and response is called co-evolution.[198] An example is the production of tetrodotoxin in the rough-skinned newt and the evolution of tetrodotoxin resistance in its predator, the common garter snake. In this predator-prey pair, an evolutionary arms race has produced high levels of toxin in the newt and correspondingly high levels of toxin resistance in the snake.[199]

Kooperacija[uredi VE | uredi]

Za daljnje informacije vidi kooperacija (evolucija).

Not all co-evolved interactions between species involve conflict.[200] Many cases of mutually beneficial interactions have evolved. For instance, an extreme cooperation exists between plants and the mycorrhizal fungi that grow on their roots and aid the plant in absorbing nutrients from the soil.[201] This is a reciprocal relationship as the plants provide the fungi with sugars from photosynthesis. Here, the fungi actually grow inside plant cells, allowing them to exchange nutrients with their hosts, while sending signals that suppress the plant immune system.[202]

Coalitions between organisms of the same species have also evolved. An extreme case is the eusociality found in social insects, such as bees, termites and ants, where sterile insects feed and guard the small number of organisms in a colony that are able to reproduce. On an even smaller scale, the somatic cells that make up the body of an animal limit their reproduction so they can maintain a stable organism, which then supports a small number of the animal's germ cells to produce offspring. Here, somatic cells respond to specific signals that instruct them whether to grow, remain as they are, or die. If cells ignore these signals and multiply inappropriately, their uncontrolled growth causes cancer.[203]

Such cooperation within species may have evolved through the process of kin selection, which is where one organism acts to help raise a relative's offspring.[204] This activity is selected for because if the helping individual contains alleles which promote the helping activity, it is likely that its kin will also contain these alleles and thus those alleles will be passed on.[205] Other processes that may promote cooperation include group selection, where cooperation provides benefits to a group of organisms.[206]

Specijacija[uredi VE | uredi]

Za daljnje informacije vidi specijacija.
The four mechanisms of speciation.

Speciation is the process where a species diverges into two or more descendant species.[207]

There are multiple ways to define the concept of "species". The choice of definition is dependent on the particularities of the species concerned.[208] For example, some species concepts apply more readily toward sexually reproducing organisms while others lend themselves better toward asexual organisms. Despite the diversity of various species concepts, these various concepts can be placed into one of three broad philosophical approaches: interbreeding, ecological and phylogenetic.[209] The biological species concept (BSC) is a classic example of the interbreeding approach. Defined by Ernst Mayr in 1942, the BSC states that "species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups".[210] Despite its wide and long-term use, the BSC like others is not without controversy, for example because these concepts cannot be applied to prokaryotes,[211] and this is called the species problem.[208] Some researchers have attempted a unifying monistic definition of species, while others adopt a pluralistic approach and suggest that there may be different ways to logically interpret the definition of a species.[208][209] "

Barriers to reproduction between two diverging sexual populations are required for the populations to become new species. Gene flow may slow this process by spreading the new genetic variants also to the other populations. Depending on how far two species have diverged since their most recent common ancestor, it may still be possible for them to produce offspring, as with horses and donkeys mating to produce mules.[212] Such hybrids are generally infertile. In this case, closely related species may regularly interbreed, but hybrids will be selected against and the species will remain distinct. However, viable hybrids are occasionally formed and these new species can either have properties intermediate between their parent species, or possess a totally new phenotype.[213] The importance of hybridisation in producing new species of animals is unclear, although cases have been seen in many types of animals,[214] with the gray tree frog being a particularly well-studied example.[215]

Speciation has been observed multiple times under both controlled laboratory conditions and in nature.[216] In sexually reproducing organisms, speciation results from reproductive isolation followed by genealogical divergence. There are four mechanisms for speciation. The most common in animals is allopatric speciation, which occurs in populations initially isolated geographically, such as by habitat fragmentation or migration. Selection under these conditions can produce very rapid changes in the appearance and behaviour of organisms.[217][218] As selection and drift act independently on populations isolated from the rest of their species, separation may eventually produce organisms that cannot interbreed.[219]

The second mechanism of speciation is peripatric speciation, which occurs when small populations of organisms become isolated in a new environment. This differs from allopatric speciation in that the isolated populations are numerically much smaller than the parental population. Here, the founder effect causes rapid speciation after an increase in inbreeding increases selection on homozygotes, leading to rapid genetic change.[220]

The third mechanism of speciation is parapatric speciation. This is similar to peripatric speciation in that a small population enters a new habitat, but differs in that there is no physical separation between these two populations. Instead, speciation results from the evolution of mechanisms that reduce gene flow between the two populations.[207] Generally this occurs when there has been a drastic change in the environment within the parental species' habitat. One example is the grass Anthoxanthum odoratum, which can undergo parapatric speciation in response to localised metal pollution from mines.[221] Here, plants evolve that have resistance to high levels of metals in the soil. Selection against interbreeding with the metal-sensitive parental population produced a gradual change in the flowering time of the metal-resistant plants, which eventually produced complete reproductive isolation. Selection against hybrids between the two populations may cause reinforcement, which is the evolution of traits that promote mating within a species, as well as character displacement, which is when two species become more distinct in appearance.[222]

Geographical isolation of finches on the Galápagos Islands produced over a dozen new species.

Finally, in sympatric speciation species diverge without geographic isolation or changes in habitat. This form is rare since even a small amount of gene flow may remove genetic differences between parts of a population.[223] Generally, sympatric speciation in animals requires the evolution of both genetic differences and non-random mating, to allow reproductive isolation to evolve.[224]

One type of sympatric speciation involves cross-breeding of two related species to produce a new hybrid species. This is not common in animals as animal hybrids are usually sterile. This is because during meiosis the homologous chromosomes from each parent are from different species and cannot successfully pair. However, it is more common in plants because plants often double their number of chromosomes, to form polyploids.[225] This allows the chromosomes from each parental species to form matching pairs during meiosis, since each parent's chromosomes are represented by a pair already.[226] An example of such a speciation event is when the plant species Arabidopsis thaliana and Arabidopsis arenosa cross-bred to give the new species Arabidopsis suecica.[227] This happened about 20,000 years ago,[228] and the speciation process has been repeated in the laboratory, which allows the study of the genetic mechanisms involved in this process.[229] Indeed, chromosome doubling within a species may be a common cause of reproductive isolation, as half the doubled chromosomes will be unmatched when breeding with undoubled organisms.[230]

Speciation events are important in the theory of punctuated equilibrium, which accounts for the pattern in the fossil record of short "bursts" of evolution interspersed with relatively long periods of stasis, where species remain relatively unchanged.[231] In this theory, speciation and rapid evolution are linked, with natural selection and genetic drift acting most strongly on organisms undergoing speciation in novel habitats or small populations. As a result, the periods of stasis in the fossil record correspond to the parental population and the organisms undergoing speciation and rapid evolution are found in small populations or geographically restricted habitats and therefore rarely being preserved as fossils.[232]

Ekstinkcija[uredi VE | uredi]

Za daljnje informacije vidi ekstinkcija.

Extinction is the disappearance of an entire species. Extinction is not an unusual event, as species regularly appear through speciation and disappear through extinction.[233] Nearly all animal and plant species that have lived on Earth are now extinct,[234] and extinction appears to be the ultimate fate of all species.[235] These extinctions have happened continuously throughout the history of life, although the rate of extinction spikes in occasional mass extinction events.[236] The Cretaceous–Paleogene extinction event, during which the non-avian dinosaurs went extinct, is the most well-known, but the earlier Permian–Triassic extinction event was even more severe, with approximately 96% of species driven to extinction.[236] The Holocene extinction event is an ongoing mass extinction associated with humanity's expansion across the globe over the past few thousand years. Present-day extinction rates are 100–1000 times greater than the background rate and up to 30% of current species may be extinct by the mid 21st century.[237] Human activities are now the primary cause of the ongoing extinction event;[238] global warming may further accelerate it in the future.[239]

The role of extinction in evolution is not very well understood and may depend on which type of extinction is considered.[236] The causes of the continuous "low-level" extinction events, which form the majority of extinctions, may be the result of competition between species for limited resources (competitive exclusion).[49] If one species can out-compete another, this could produce species selection, with the fitter species surviving and the other species being driven to extinction.[109] The intermittent mass extinctions are also important, but instead of acting as a selective force, they drastically reduce diversity in a nonspecific manner and promote bursts of rapid evolution and speciation in survivors.[240]

Evolucijska povijest života[uredi VE | uredi]

glavni članak: evolucijska povijest života
više informacija: kronologija evolucije i kronologija humane evolucije

Porijeklo života[uredi VE | uredi]

Za daljnje informacije vidi abiogeneza i hipoteza svijeta RNA.

Highly energetic chemistry is thought to have produced a self-replicating molecule around 4 billion years ago, and half a billion years later the last common ancestor of all life existed.[241] The current scientific consensus is that the complex biochemistry that makes up life came from simpler chemical reactions.[242] The beginning of life may have included self-replicating molecules such as RNA[243] and the assembly of simple cells.[244]

Zajedničko porijeklo[uredi VE | uredi]

Za daljnje informacije vidi zajedničko porijeklo i dokaz zajedničkog porijekla.
The hominoids are descendants of a common ancestor.

All organisms on Earth are descended from a common ancestor or ancestral gene pool.[176][245] Current species are a stage in the process of evolution, with their diversity the product of a long series of speciation and extinction events.[246] The common descent of organisms was first deduced from four simple facts about organisms: First, they have geographic distributions that cannot be explained by local adaptation. Second, the diversity of life is not a set of completely unique organisms, but organisms that share morphological similarities. Third, vestigial traits with no clear purpose resemble functional ancestral traits and finally, that organisms can be classified using these similarities into a hierarchy of nested groups – similar to a family tree.[247] However, modern research has suggested that, due to horizontal gene transfer, this "tree of life" may be more complicated than a simple branching tree since some genes have spread independently between distantly related species.[248][249]

Past species have also left records of their evolutionary history. Fossils, along with the comparative anatomy of present-day organisms, constitute the morphological, or anatomical, record.[250] By comparing the anatomies of both modern and extinct species, paleontologists can infer the lineages of those species. However, this approach is most successful for organisms that had hard body parts, such as shells, bones or teeth. Further, as prokaryotes such as bacteria and archaea share a limited set of common morphologies, their fossils do not provide information on their ancestry.

More recently, evidence for common descent has come from the study of biochemical similarities between organisms. For example, all living cells use the same basic set of nucleotides and amino acids.[251] The development of molecular genetics has revealed the record of evolution left in organisms' genomes: dating when species diverged through the molecular clock produced by mutations.[252] For example, these DNA sequence comparisons have revealed that humans and chimpanzees share 98% of their genomes and analysing the few areas where they differ helps shed light on when the common ancestor of these species existed.[253]

Evolucija života[uredi VE | uredi]

glavni članak: evolucijska povijest života i kronologija evolucije

{{PhylomapA|size=320px|align=right|caption=[[Phylogenetic tree|Evolutionary tree]] showing the divergence of modern species from their common ancestor in the centre.<ref name=Ciccarelli>{{cite journal |author = Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P |title = Toward automatic reconstruction of a highly resolved tree of life |journal = Science |volume = 311 |issue = 5765 |pages = 1283–87 |year = 2006 |pmid = 16513982 |doi = 10.1126/science.1123061 |ref = harv |bibcode = 2006Sci...311.1283C }}</ref> The three domains are coloured, with bacteria blue, archaea green and eukaryotes red.}} Prokaryotes inhabited the Earth from approximately 3–4 billion years ago.[254][255] No obvious changes in morphology or cellular organisation occurred in these organisms over the next few billion years.[256] The eukaryotic cells emerged between 1.6 – 2.7 billion years ago. The next major change in cell structure came when bacteria were engulfed by eukaryotic cells, in a cooperative association called endosymbiosis.[257][258] The engulfed bacteria and the host cell then underwent co-evolution, with the bacteria evolving into either mitochondria or hydrogenosomes.[259] Another engulfment of cyanobacterial-like organisms led to the formation of chloroplasts in algae and plants.[260]

The history of life was that of the unicellular eukaryotes, prokaryotes and archaea until about 610 million years ago when multicellular organisms began to appear in the oceans in the Ediacaran period.[254][261] The evolution of multicellularity occurred in multiple independent events, in organisms as diverse as sponges, brown algae, cyanobacteria, slime moulds and myxobacteria.[262]

Soon after the emergence of these first multicellular organisms, a remarkable amount of biological diversity appeared over approximately 10 million years, in an event called the Cambrian explosion. Here, the majority of types of modern animals appeared in the fossil record, as well as unique lineages that subsequently became extinct.[263] Various triggers for the Cambrian explosion have been proposed, including the accumulation of oxygen in the atmosphere from photosynthesis.[264]

About 500 million years ago, plants and fungi colonised the land and were soon followed by arthropods and other animals.[265] Insects were particularly successful and even today make up the majority of animal species.[266] Amphibians first appeared around 364 million years ago, followed by early amniotes and birds around 155 million years ago (both from "reptile"-like lineages), mammals around 129 million years ago, homininae around 10 million years ago and modern humans around 250,000 years ago.[267][268][269] However, despite the evolution of these large animals, smaller organisms similar to the types that evolved early in this process continue to be highly successful and dominate the Earth, with the majority of both biomass and species being prokaryotes.[153]

Primjene[uredi VE | uredi]

glavni članci: primjene evolucije, umjetna selekcija i evolucijsko računarstvo

Concepts and models used in evolutionary biology, such as natural selection, have many applications.[270]

Artificial selection is the intentional selection of traits in a population of organisms. This has been used for thousands of years in the domestication of plants and animals.[271] More recently, such selection has become a vital part of genetic engineering, with selectable markers such as antibiotic resistance genes being used to manipulate DNA. Proteins with valuable properties have evolved by repeated rounds of mutation and selection (for example modified enzymes and new antibodies) in a process called directed evolution.[272]

Understanding the changes that have occurred during organism's evolution can reveal the genes needed to construct parts of the body, genes which may be involved in human genetic disorders.[273] For example, the mexican tetra is an albino cavefish that lost its eyesight during evolution. Breeding together different populations of this blind fish produced some offspring with functional eyes, since different mutations had occurred in the isolated populations that had evolved in different caves.[274] This helped identify genes required for vision and pigmentation.[275]

Many human diseases are not static phenomena, but capable of evolution. Viruses, bacteria, fungi and cancers evolve to be resistant to host immune defences, as well as pharmaceutical drugs.[276][277][278] These same problems occur in agriculture with pesticide[279] and herbicide[280] resistance. It is possible that we are facing the end of the effective life of most of available antibiotics[281] and predicting the evolution and evolvability[282] of our pathogens and devising strategies to slow or circumvent it is requiring deeper knowledge of the complex forces driving evolution at the molecular level.[283]

In computer science, simulations of evolution using evolutionary algorithms and artificial life started in the 1960s and was extended with simulation of artificial selection.[284] Artificial evolution became a widely recognised optimisation method as a result of the work of Ingo Rechenberg in the 1960s. He used evolution strategies to solve complex engineering problems.[285] Genetic algorithms in particular became popular through the writing of John Holland.[286] Practical applications also include automatic evolution of computer programmes.[287] Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers and also to optimise the design of systems.[288]

Socijalni i kulturni odgovori[uredi VE | uredi]

Za daljnje informacije vidi socijalni efekt evolucijske teorije, oksfordska debata o evoluciji 1860., kontroverzija kreacija-evolucija i prigovori evoluciji.
As evolution became widely accepted in the 1870s, caricatures of Charles Darwin with an ape or monkey body symbolised evolution.[289]

In the 19th century, particularly after the publication of On the Origin of Species in 1859, the idea that life had evolved was an active source of academic debate centred on the philosophical, social and religious implications of evolution. Today, the modern evolutionary synthesis is accepted by a vast majority of scientists.[49] However, evolution remains a contentious concept for some theists.[290]

While various religions and denominations have reconciled their beliefs with evolution through concepts such as theistic evolution, there are creationists who believe that evolution is contradicted by the creation myths found in their religions and who raise various objections to evolution.[144][291][292] As had been demonstrated by responses to the publication of Vestiges of the Natural History of Creation in 1844, the most controversial aspect of evolutionary biology is the implication of human evolution that humans share common ancestry with apes and that the mental and moral faculties of humanity have the same types of natural causes as other inherited traits in animals.[293] In some countries, notably the United States, these tensions between science and religion have fuelled the current creation-evolution controversy, a religious conflict focusing on politics and public education.[294] While other scientific fields such as cosmology[295] and Earth science[296] also conflict with literal interpretations of many religious texts, evolutionary biology experiences significantly more opposition from religious literalists.

The teaching of evolution in American secondary school biology classes was uncommon in most of the first half of the 20th century. The Scopes Trial decision of 1925 caused the subject to become very rare in American secondary biology textbooks for a generation, but it was gradually re-introduced later and became legally protected with the 1968 Epperson v. Arkansas decision. Since then, the competing religious belief of creationism was legally disallowed in secondary school curricula in various decisions in the 1970s and 1980s, but it returned in pseudoscientific form as intelligent design, to be excluded once again in the 2005 Kitzmiller v. Dover Area School District case.[297]

Više informacija[uredi VE | uredi]

Izvori[uredi VE | uredi]

  1. Hall, B. K.; Hallgrímsson, B., ur. (2008). Strickberger's Evolution (4. izd.). Jones & Bartlett. ISBN 0-7637-0066-5.
  2. Panno, Joseph (2005). The Cell: Evolution of the First Organism, Facts on File ISBN 0-8160-4946-7
  3. Cracraft, J.; Donoghue, M. J., ur. (2005). Assembling the tree of life. Oxford University Press. ISBN 0-19-517234-5.
  4. Lewontin, R. C. (1970). "The units of selection". Annual Review of Ecology and Systematics 1: 1–18. doi: 10.1146/annurev.es.01.110170.000245. JSTOR 2096764.
  5. Darwin, Charles (1859). "XIV". On The Origin of Species. Str. 503. ISBN 0-8014-1319-2.
  6. 6,0 6,1 Kimura M (1991). "The neutral theory of molecular evolution: a review of recent evidence". Jpn. J. Genet. 66 (4): 367–86. doi: 10.1266/jjg.66.367]. PMID 1954033.
  7. Provine, W. B. (1988). “Progress in evolution and meaning in life”, Evolutionary progress, str. 49–79, University of Chicago Press
  8. National Academy of Science Institute of Medicine (2008). Science, Evolution, and Creationism. National Academy Press. ISBN 0-309-10586-2.
  9. Moore, R.; Decker, M.; Cotner, S. (2009). Chronology of the Evolution-Creationism Controversy. Greenwood. Str. 454. ISBN 0-313-36287-4.
  10. Futuyma, Douglas J., ur. (1999). "Evolution, Science, and Society: Evolutionary Biology and the National Research Agenda". Office of University Publications, Rutgers, The State University of New Jersey.
  11. (1984a) The Presocratic Philosophers: A Critical History with a Selection of Texts, 3rd, str. 100–142, Chicago: The University of Chicago Press ISBN 0-521-27455-9
  12. (1984b) The Presocratic Philosophers: A Critical History with a Selection of Texts, 3rd, str. 280–321, Chicago: The University of Chicago Press ISBN 0-521-27455-9
  13. Lucretius. “lines 855–877”, De Rerum Natura, edited and translated by William Ellery Leonard (1916).
  14. Sedley, David (2003). "Lucretius and the new Empedocles". Leeds International Classical Studies 2.4
  15. (ožujka 1937) "Was Aristotle an evolutionist?". The Quarterly Review of Biology 12 (1): 1–18
  16. (1967). "The metaphysics of evolution". The British Journal for the History of Science 3 (4): 309–337
  17. Mason, A History of the Sciences pp 43–44
  18. Mayr Growth of biological thought p256; original was Ray, History of Plants. 1686, trans E. Silk.
  19. Carl Linnaeus - berkeley.edu pristupljeno 11. veljače 2012.
  20. (1909) The foundations of the origin of species, a sketch written in 1942 by Charles Darwin, Cambridge University Press
  21. Bowler, Peter J. 2003. Evolution: the history of an idea. Berkeley, CA. p73–75
  22. Erasmus Darwin - berkeley.edu pristupljeno 11. veljače 2012.
  23. Lamarck (1809) Philosophie Zoologique
  24. 24,0 24,1 (1991) Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis, The MIT Press ISBN 0-262-13269-9
  25. 25,0 25,1 25,2 Gould, S.J. (2002). The Structure of Evolutionary Theory, Cambridge: Belknap Press (Harvard University PressISBN 978-0-674-00613-3
  26. Ghiselin, Michael T.. The Textbook Letter, The Textbook League pristupljeno 23. siječnja 2008.
  27. Magner, Lois N. (2002). A History of the Life Sciences, Third, Marcel Dekker, CRC Press ISBN 978-0-203-91100-6
  28. (2007). "Précis of evolution in four dimensions". Behavioural and Brain Sciences 30 (4): 353–392
  29. (1991) The correspondence of Charles Darwin, str. 1858–1859, Cambridge University Press
  30. (2009). "Why Darwin rejected intelligent design". Journal of Biosciences 34 (2): 173–183
  31. (1990) Blind Watchmaker, Penguin Books ISBN 0-14-014481-1
  32. (2009). "Did Darwin write the origin backwards?". Proceedings of the National Academy of Sciences 106 (S1): 10048–10055
  33. Mayr, Ernst (2001) What evolution is. Weidenfeld & Nicolson, London. p165
  34. Bowler, Peter J. (2003). Evolution: the history of an idea, str. 145–146, Berkeley: University of California Press ISBN 0-520-23693-9 page 147"
  35. Sokal RR, Crovello TJ (1970). "The biological species concept: A critical evaluation". The American Naturalist 104 (936): 127–153
  36. (kolovoza 1858)"On the Tendency of Species to form Varieties and on the Perpetuation of Varieties and Species by Natural Means of Selection". Zoological Journal of the Linnean Society 3 (2): 45–62 pristupljeno 13. svibnja 2007.
  37. Encyclopædia Britannica Online. Britannica.com pristupljeno 11. siječnja 2012.
  38. (2009). "Darwin's contributions to genetics". J Appl Genet 50 (3): 177–184
  39. Weiling F (1991). "Historical study: Johann Gregor Mendel 1822–1884". Am. J. Med. Genet. 40 (1): 1–25; discussion 26
  40. (15. lipnja 1984.) Evolution and the Genetics of Populations, Volume 1: Genetic and Biometric Foundations, University of Chicago Press ISBN 0-226-91038-5
  41. Will Provine (1971). The Origins of Theoretical Population Genetics, University of Chicago Press ISBN 0-226-68464-4
  42. (1999). "Hugo de Vries on heredity, 1889–1903. Statistics, Mendelian laws, pangenes, mutations". Isis 90 (2): 238–67
  43. Quammen, D. (2006). The reluctant Mr. Darwin: An intimate portrait of Charles Darwin and the making of his theory of evolution. New York, NY: W.W. Norton & Company.
  44. Bowler, Peter J. (1989). The Mendelian Revolution: The Emergence of Hereditarian Concepts in Modern Science and Society, Baltimore: Johns Hopkins University Press ISBN 978-0-8018-3888-0
  45. (1953). "Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid". Nature 171 (4356): 737–738
  46. (1999) Phylogenetic systematics, New edition (Mar 1, 1999), University of Illinois Press ISBN 0-252-06814-9
  47. (2011) Phylogenetics: Theory and practice of phylogenetic systematics, 2nd, Wiley-Blackwell
  48. (1973). "Nothing in biology makes sense except in the light of evolution". The American Biology Teacher 35 (3): 125–129
  49. 49,0 49,1 49,2 49,3 Kutschera U, Niklas K (2004). "The modern theory of biological evolution: an expanded synthesis". Naturwissenschaften 91 (6): 255–76
  50. (2004) Evolutionary science and society: Educating a new generation
  51. (2010). "In the Light of Evolution IV. The Human Condition (introduction)". Proceedings of the National Academy of Sciences USA 107 (S2): 8897–8901
  52. Sturm RA, Frudakis TN (2004). "Eye colour: portals into pigmentation genes and ancestry". Trends Genet. 20 (8): 327–32
  53. 53,0 53,1 Pearson H (2006). "Genetics: what is a gene?". Nature 441 (7092): 398–401
  54. Visscher PM, Hill WG, Wray NR (2008). "Heritability in the genomics era—concepts and misconceptions". Nature Reviews Genetics 9 (4): 255–66
  55. Oetting WS, Brilliant MH, King RA (1996). "The clinical spectrum of albinism in humans". Molecular medicine today 2 (8): 330–5
  56. 56,0 56,1 Futuyma, Douglas J. (2005). Evolution, Sunderland, Massachusetts: Sinauer Associates, Inc ISBN 0-87893-187-2
  57. Phillips PC (2008). "Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems". Nature Reviews Genetics 9 (11): 855–67
  58. 58,0 58,1 Wu R, Lin M (2006). "Functional mapping – how to map and study the genetic architecture of dynamic complex traits". Nature Reviews Genetics 7 (3): 229–37
  59. (2009). "Transgenerational epigenetic inheritance: Prevalence, mechanisms and implications for the study of heredity and evolution". The Quarterly Review of Biology 84 (2): 131–176
  60. (2010). "Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana". Evolutionary Ecology 24 (3): 541–553
  61. (2005) Evolution in four dimensions: Genetic, epigenetic, behavioural and symbolic, MIT Press ISBN 0-262-10107-6
  62. (2002). "The changing concept of epigenetics". Annals of the New York Academy of Sciences 981 (1): 82–96
  63. (2006). "Perspective: Seven reasons (not) to neglect niche construction". Evolution 60 (8): 1751–1762
  64. (1998). "Morphogenesis by symbiogenesis". International Microbiology 1 (4): 319–326
  65. (2007). "Rethinking the theoretical foundation of sociobiology". The Quarterly Review of Biology 82 (4): 327–348
  66. Harwood AJ (1998). "Factors affecting levels of genetic diversity in natural populations". Philosophical Transactions of the Royal Society B 353 (1366): 177–86
  67. 67,0 67,1 Ewens W.J. (2004). Mathematical Population Genetics (2nd Edition), Springer-Verlag, New York ISBN 0-387-20191-2
  68. Butlin RK, Tregenza T (1998). "Levels of genetic polymorphism: marker loci versus quantitative traits". Philosophical Transactions of the Royal Society B 353 (1366): 187–98
  69. Wetterbom A, Sevov M, Cavelier L, Bergström TF (2006). "Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution". J. Mol. Evol. 63 (5): 682–90
  70. Sawyer SA, Parsch J, Zhang Z, Hartl DL (2007). "Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila". Proc. Natl. Acad. Sci. U.S.A. 104 (16): 6504–10
  71. Hastings, P J (2009). "Mechanisms of change in gene copy number". Nature Reviews Genetics 10 (8): 551–564
  72. Sean B. Carroll; Jennifer K. Grenier; Scott D. Weatherbee. (2005). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Second Edition, Oxford: Blackwell Publishing ISBN 1-4051-1950-0
  73. Harrison P, Gerstein M (2002). "Studying genomes through the aeons: protein families, pseudogenes and proteome evolution". J Mol Biol 318 (5): 1155–74
  74. Bowmaker JK (1998). "Evolution of colour vision in vertebrates". Eye (London, England) 12 (Pt 3b): 541–7
  75. Gregory TR, Hebert PD (1999). "The modulation of DNA content: proximate causes and ultimate consequences". Genome Res. 9 (4): 317–24
  76. Hurles M (2004). "Gene duplication: the genomic trade in spare parts". PLoS Biol. 2 (7): E206
  77. Liu N, Okamura K, Tyler DM (2008). "The evolution and functional diversification of animal microRNA genes". Cell Res. 18 (10): 985–96
  78. Siepel A (2009). "Darwinian alchemy: Human genes from noncoding DNA". Genome Res. 19 (10): 1693–5
  79. Orengo CA, Thornton JM (2005). "Protein families and their evolution-a structural perspective". Annu. Rev. Biochem. 74 (1): 867–900
  80. Long M, Betrán E, Thornton K, Wang W (2003). "The origin of new genes: glimpses from the young and old". Nature Reviews Genetics 4 (11): 865–75
  81. Wang M, Caetano-Anollés G (2009). "The evolutionary mechanics of domain organisation in proteomes and the rise of modularity in the protein world". Structure 17 (1): 66–78
  82. Weissman KJ, Müller R (2008). "Protein-protein interactions in multienzyme megasynthetases". Chembiochem 9 (6): 826–48
  83. Radding C (1982). "Homologous pairing and strand exchange in genetic recombination". Annu. Rev. Genet. 16 (1): 405–37
  84. Agrawal AF (2006). "Evolution of sex: why do organisms shuffle their genotypes?". Curr. Biol. 16 (17): R696–704
  85. Peters AD, Otto SP (2003). "Liberating genetic variance through sex". BioEssays 25 (6): 533–7
  86. Goddard MR, Godfray HC, Burt A (2005). "Sex increases the efficacy of natural selection in experimental yeast populations". Nature 434 (7033): 636–40
  87. 87,0 87,1 Morjan C, Rieseberg L (2004). "How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles". Mol. Ecol. 13 (6): 1341–56
  88. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003). "Lateral gene transfer and the origins of prokaryotic groups". Annu Rev Genet 37 (1): 283–328
  89. Walsh T (2006). "Combinatorial genetic evolution of multiresistance". Current Opinion in Microbiology 9 (5): 476–82
  90. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002). "Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect". Proc. Natl. Acad. Sci. U.S.A. 99 (22): 14280–5
  91. Sprague G (1991). "Genetic exchange between kingdoms". Current Opinion in Genetics & Development 1 (4): 530–3
  92. Gladyshev EA, Meselson M, Arkhipova IR (2008). "Massive horizontal gene transfer in bdelloid rotifers". Science 320 (5880): 1210–3
  93. Baldo A, McClure M (1. rujna 1999.). "Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts". J. Virol. 73 (9): 7710–21
  94. River, M. C. and Lake, J. A. (2004). "The ring of life provides evidence for a genome fusion origin of eukaryotes". Nature 431 (9): 152–5
  95. 95,0 95,1 95,2 Hurst LD (2009). "Fundamental concepts in genetics: genetics and the understanding of selection". Nature Reviews Genetics 10 (2): 83–93
  96. 96,0 96,1 96,2 Orr HA (2009). "Fitness and its role in evolutionary genetics". Nature Reviews Genetics 10 (8): 531–9
  97. Haldane J (1959). "The theory of natural selection today". Nature 183 (4663): 710–3
  98. Lande R, Arnold SJ (1983). "The measurement of selection on correlated characters". Evolution 37 (6): 1210–26
  99. Goldberg, Emma E (2008). "On phylogenetic tests of irreversible evolution". Evolution 62 (11): 2727–2741
  100. Collin, Rachel (2008). "Reversing opinions on Dollo's Law". Trends in Ecology & Evolution 23 (11): 602–609
  101. Hoekstra H, Hoekstra J, Berrigan D, Vignieri S, Hoang A, Hill C, Beerli P, Kingsolver J (2001). "Strength and tempo of directional selection in the wild". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 9157–60
  102. Felsenstein (1. studenoga 1979.). "Excursions along the Interface between Disruptive and Stabilizing Selection". Genetics 93 (3): 773–95
  103. Andersson M, Simmons L (2006). "Sexual selection and mate choice". Trends Ecol. Evol. (Amst.) 21 (6): 296–302
  104. Kokko H, Brooks R, McNamara J, Houston A (2002). "The sexual selection continuum". Proc. Biol. Sci. 269 (1498): 1331–40
  105. Quinn, Thomas P., Andrew P. Hendry, Gregory B. Buck (2001). "Balancing natural and sexual selection in sockeye salmon: interactions between body size, reproductive opportunity and vulnerability to predation by bears". Evolutionary Ecology Research 3: 917–937
  106. Hunt J, Brooks R, Jennions M, Smith M, Bentsen C, Bussière L (2004). "High-quality male field crickets invest heavily in sexual display but die young". Nature 432 (7020): 1024–7
  107. Odum, EP (1971) Fundamentals of ecology, third edition, Saunders New York
  108. (2007) Evolution and the Levels of Selection, Oxford University Press ISBN 0-19-926797-9
  109. 109,0 109,1 Gould SJ (1998). "Gulliver's further travels: the necessity and difficulty of a hierarchical theory of selection". Philosophical Transactions of the Royal Society B 353 (1366): 307–14
  110. Mayr E (1997). "The objects of selection". Proc. Natl. Acad. Sci. U.S.A. 94 (6): 2091–4
  111. Maynard Smith J (1998). "The units of selection". Novartis Found. Symp. 213: 203–11; discussion 211–7
  112. Hickey DA (1992). "Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes". Genetica 86 (1–3): 269–74
  113. Gould SJ, Lloyd EA (1999). "Individuality and adaptation across levels of selection: how shall we name and generalise the unit of Darwinism?". Proc. Natl. Acad. Sci. U.S.A. 96 (21): 11904–9
  114. Lynch, M. (2007). "The frailty of adaptive hypotheses for the origins of organismal complexity". PNAS 104 (suppl. 1): 8597–8604
  115. Smith N.G.C., Webster M.T., Ellegren, H. (2002). "Deterministic Mutation Rate Variation in the Human Genome". Genome Research 12 (9): 1350–1356
  116. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000). "Evidence for DNA loss as a determinant of genome size". Science 287 (5455): 1060–1062
  117. Petrov DA (2002). "DNA loss and evolution of genome size in Drosophila". Genetica 115 (1): 81–91
  118. Kiontke K, Barriere A , Kolotuev I, Podbilewicz B , Sommer R, Fitch DHA , Felix MA (2007). "Trends, stasis, and drift in the evolution of nematode vulva development". Current Biology 17 (22): 1925–1937
  119. Braendle C, Baer CF, Felix MA (2010). "Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System". PLoS Genetics 6 (3): e1000877. e1000877
  120. Palmer, RA (2004). "Symmetry breaking and the evolution of development". Science 306 (5697): 828–833
  121. West-Eberhard, M-J. (2003). Developmental plasticity and evolution, New York: Oxford University Press ISBN 978-0-19-512235-0
  122. Stoltzfus, A and Yampolsky, L.Y. (2009). "Climbing Mount Probable: Mutation as a Cause of Nonrandomness in Evolution". J Hered 100 (5): 637–647
  123. Yampolsky, L.Y. and Stoltzfus, A (2001). "Bias in the introduction of variation as an orienting factor in evolution". Evol Dev 3 (2): 73–83
  124. Haldane, JBS (1933). "The Part Played by Recurrent Mutation in Evolution". American Naturalist 67 (708): 5–19
  125. Protas, Meredith (2007). "Regressive evolution in the Mexican cave tetra, Astyanax mexicanus". Current Biology 17 (5): 452–454
  126. Maughan H, Masel J, Birky WC, Nicholson WL (2007). "The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis". Genetics 177 (2): 937–948
  127. Masel J, King OD, Maughan H (2007). "The loss of adaptive plasticity during long periods of environmental stasis". American Naturalist 169 (1): 38–46
  128. 128,0 128,1 Masel J (2011). "Genetic drift". Current Biology 21 (20): R837–R838
  129. Lande R (1989). "Fisherian and Wrightian theories of speciation". Genome 31 (1): 221–7
  130. Mitchell-Olds, Thomas (2007). "Which evolutionary processes influence natural genetic variation for phenotypic traits?". Nature Reviews Genetics 8 (11): 845–856
  131. Nei M (2005). "Selectionism and neutralism in molecular evolution". Mol. Biol. Evol. 22 (12): 2318–42
  132. Kimura M (1989). "The neutral theory of molecular evolution and the world view of the neutralists". Genome 31 (1): 24–31
  133. Kreitman M (1996). "The neutral theory is dead. Long live the neutral theory". BioEssays 18 (8): 678–83; discussion 683
  134. Leigh E.G. (Jr) (2007). "Neutral theory: a historical perspective". Journal of Evolutionary Biology 20 (6): 2075–91
  135. 135,0 135,1 Gillespie, John H. (2001). "Is the population size of a species relevant to its evolution?". Evolution 55 (11): 2161–2169
  136. R.A. Neher and B.I. Shraiman (2011). "Genetic Draft and Quasi-Neutrality in Large Facultatively Sexual Populations". Genetics 188 (4): 975–996
  137. Otto S, Whitlock M (1. lipnja 1997.). "The probability of fixation in populations of changing size". Genetics 146 (2): 723–33
  138. 138,0 138,1 Charlesworth B (2009). "Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation". Nature Reviews Genetics 10 (3): 195–205
  139. Asher D. Cutter and Jae Young Choi (2010). "Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae". Genome Research 20 (8): 1103–1111
  140. Lien S, Szyda J, Schechinger B, Rappold G, Arnheim N (2000). "Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping". Am. J. Hum. Genet. 66 (2): 557–66
  141. Barton, N H (2000). "Genetic hitchhiking". Philosophical Transactions of the Royal Society B 355 (1403): 1553–1562
  142. (1932). "The roles of mutation, inbreeding, crossbreeding and selection in evolution". Proc. 6th Int. Cong. Genet 1: 356–366
  143. (1997). "Perspective: A Critique of Sewall Wright's Shifting Balance Theory of Evolution". Evolution 51 (3): 643–671
  144. 144,0 144,1 144,2 Scott EC, Matzke NJ (2007). "Biological design in science classrooms". Proc. Natl. Acad. Sci. U.S.A. 104 (suppl_1): 8669–76
  145. Hendry AP, Kinnison MT (2001). "An introduction to microevolution: rate, pattern, process". Genetica 112–113: 1–8
  146. Leroi AM (2000). "The scale independence of evolution". Evol. Dev. 2 (2): 67–77
  147. Gould SJ (1994). "Tempo and mode in the macroevolutionary reconstruction of Darwinism". Proc. Natl. Acad. Sci. U.S.A. 91 (15): 6764–71
  148. Jablonski, D. (2000). "Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology". Paleobiology 26 (sp4): 15–52
  149. Michael J. Dougherty. Is the human race evolving or devolving? Scientific American July 20, 1998.
  150. TalkOrigins Archive response to Creationist claims – Claim CB932: Evolution of degenerate forms
  151. Carroll SB (2001). "Chance and necessity: the evolution of morphological complexity and diversity". Nature 409 (6823): 1102–9
  152. Whitman W, Coleman D, Wiebe W (1998). "Prokaryotes: the unseen majority". Proc Natl Acad Sci U S A 95 (12): 6578–83
  153. 153,0 153,1 Schloss P, Handelsman J (2004). "Status of the microbial census". Microbiol Mol Biol Rev 68 (4): 686–91
  154. Nealson K (1999). "Post-Viking microbiology: new approaches, new data, new insights". Orig Life Evol Biosph 29 (1): 73–93
  155. Buckling A, Craig Maclean R, Brockhurst MA, Colegrave N (2009). "The Beagle in a bottle". Nature 457 (7231): 824–9
  156. Elena SF, Lenski RE (2003). "Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation". Nature Reviews Genetics 4 (6): 457–69
  157. Mayr, Ernst 1982. The growth of biological thought. Harvard. p483: "Adaptation... could no longer be considered a static condition, a product of a creative past and became instead a continuing dynamic process."
  158. The Oxford Dictionary of Science defines adaptation as "Any change in the structure or functioning of an organism that makes it better suited to its environment".
  159. Orr H (2005). "The genetic theory of adaptation: a brief history". Nature Reviews Genetics 6 (2): 119–27
  160. (1968) “On some fundamental concepts of evolutionary biology”, Evolutionary biology volume 2, 1st, str. 1–34, New York: Appleton-Century-Crofts
  161. (1970) Genetics of the evolutionary process, str. 4–6, 79–82, 84–87, N.Y.: Columbia ISBN 0-231-02837-7
  162. (1956). "Genetics of natural populations XXV. Genetic changes in populations of Drosophila pseudoobscura and Drosphila persimilis in some locations in California". Evolution 10 (1): 82–92
  163. Nakajima A, Sugimoto Y, Yoneyama H, Nakae T (2002). "High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation". Microbiol. Immunol. 46 (6): 391–5
  164. Blount ZD, Borland CZ, Lenski RE (2008). "Inaugural Article: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli". Proc. Natl. Acad. Sci. U.S.A. 105 (23): 7899–906
  165. Okada H, Negoro S, Kimura H, Nakamura S (1983). "Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers". Nature 306 (5939): 203–6
  166. Ohno S (1984). "Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence". Proc. Natl. Acad. Sci. U.S.A. 81 (8): 2421–5
  167. Copley SD (2000). "Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach". Trends Biochem. Sci. 25 (6): 261–5
  168. Crawford RL, Jung CM, Strap JL (2007). "The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP". Biodegradation 18 (5): 525–39
  169. Eshel I (1973). "Clone-selection and optimal rates of mutation". Journal of Applied Probability 10 (4): 728–738
  170. Altenberg, L (1995). "Genome growth and the evolution of the genotype-phenotype map" 899: 205–259
  171. Masel J, Bergman A, (2003). "The evolution of the evolvability properties of the yeast prion [PSI+]". Evolution 57 (7): 1498–1512
  172. Lancaster AK, Bardill JP, True HL, Masel J (2010). "The Spontaneous Appearance Rate of the Yeast Prion [PSI+] and Its Implications for the Evolution of the Evolvability Properties of the [PSI+] System". Genetics 184 (2): 393–400
  173. Draghi J, Wagner G (2008). "Evolution of evolvability in a developmental model". Theoretical Population Biology 62: 301–315
  174. 174,0 174,1 Bejder L, Hall BK (2002). "Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss". Evol. Dev. 4 (6): 445–58
  175. Young, Nathan M. (2005). "Serial homology and the evolution of mammalian limb covariation structure". Evolution 59 (12): 2691–704
  176. 176,0 176,1 Penny D, Poole A (1999). "The nature of the last universal common ancestor". Current Opinion in Genetics & Development 9 (6): 672–77
  177. Hall, Brian K (2003). "Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution". Biological Reviews of the Cambridge Philosophical Society 78 (3): 409–433
  178. Shubin, Neil (2009). "Deep homology and the origins of evolutionary novelty". Nature 457 (7231): 818–823
  179. 179,0 179,1 179,2 Fong D, Kane T, Culver D (1995). "Vestigialisation and Loss of Nonfunctional Characters". Ann. Rev. Ecol. Syst. 26 (4): 249–68
  180. Zhang Z, Gerstein M (2004). "Large-scale analysis of pseudogenes in the human genome". Current Opinion in Genetics & Development 14 (4): 328–35
  181. Jeffery WR (2005). "Adaptive evolution of eye degeneration in the Mexican blind cavefish". J. Hered. 96 (3): 185–96
  182. Maxwell EE, Larsson HC (2007). "Osteology and myology of the wing of the Emu (Dromaius novaehollandiae) and its bearing on the evolution of vestigial structures". J. Morphol. 268 (5): 423–41
  183. Silvestri AR, Singh I (2003). "The unresolved problem of the third molar: would people be better off without it?". Journal of the American Dental Association (1939) 134 (4): 450–5
  184. Coyne, Jerry A. (2009). Why Evolution is True, Penguin Group ISBN 978-0-670-02053-9
  185. Darwin, Charles. (1872) The Expression of the Emotions in Man and Animals John Murray, London.
  186. Peter Gray (2007). Psychology, fifth, Worth Publishers ISBN 0-7167-0617-2
  187. Coyne, Jerry A. (2009). Why Evolution Is True, str. 85–86, Penguin Group ISBN 978-0-670-02053-9
  188. Anthony Stevens (1982). Archetype: A Natural History of the Self, Routledge & Kegan Paul ISBN 0-7100-0980-1
  189. Pallen, Mark J. (listopada 2006). "From The Origin of Species to the origin of bacterial flagella". Nature Reviews Microbiology 4 (10): 784–790 pristupljeno 18. rujna 2009.
  190. Clements, Abigail (2009). "The reducible complexity of a mitochondrial molecular machine". Proceedings of the National Academy of Sciences 106 (37): 15791–15795
  191. Piatigorsky J, Kantorow M, Gopal-Srivastava R, Tomarev SI (1994). "Recruitment of enzymes and stress proteins as lens crystallins". EXS 71: 241–50
  192. Wistow G (1993). "Lens crystallins: gene recruitment and evolutionary dynamism". Trends Biochem. Sci. 18 (8): 301–6
  193. Johnson NA, Porter AH (2001). "Toward a new synthesis: population genetics and evolutionary developmental biology". Genetica 112–113: 45–58
  194. Baguñà J, Garcia-Fernàndez J (2003). "Evo-Devo: the long and winding road". Int. J. Dev. Biol. 47 (7–8): 705–13
    *Love AC. (2003). "Evolutionary Morphology, Innovation and the Synthesis of Evolutionary and Developmental Biology". Biology and Philosophy 18 (2): 309–345
  195. Allin EF (1975). "Evolution of the mammalian middle ear". J. Morphol. 147 (4): 403–37
  196. Harris MP, Hasso SM, Ferguson MW, Fallon JF (2006). "The development of archosaurian first-generation teeth in a chicken mutant". Curr. Biol. 16 (4): 371–7
  197. Carroll SB (2008). "Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution". Cell 134 (1): 25–36
  198. Wade MJ (2007). "The co-evolutionary genetics of ecological communities". Nature Reviews Genetics 8 (3): 185–95
  199. Geffeney S, Brodie ED, Ruben PC, Brodie ED (2002). "Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels". Science 297 (5585): 1336–9
    *Brodie ED, Ridenhour BJ, Brodie ED (2002). "The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts". Evolution 56 (10): 2067–82
    *Sean B. Carroll. "Remarkable Creatures – Clues to Toxins in Deadly Delicacies of the Animal Kingdom", New York Times, objavljeno 21. prosinca 2009.
  200. Sachs J (2006). "Cooperation within and among species". J. Evol. Biol. 19 (5): 1415–8; discussion 1426–36
    *Nowak M (2006). "Five rules for the evolution of cooperation". Science 314 (5805): 1560–3
  201. Paszkowski U (2006). "Mutualism and parasitism: the yin and yang of plant symbioses". Current Opinion in Plant Biology 9 (4): 364–70
  202. Hause B, Fester T (2005). "Molecular and cell biology of arbuscular mycorrhizal symbiosis". Planta 221 (2): 184–96
  203. Bertram J (2000). "The molecular biology of cancer". Mol. Aspects Med. 21 (6): 167–223
  204. Reeve HK, Hölldobler B (2007). "The emergence of a superorganism through intergroup competition". Proc Natl Acad Sci U S A. 104 (23): 9736–40
  205. Axelrod R, Hamilton W (2005). "The evolution of cooperation". Science 211 (4489): 1390–6
  206. Wilson EO, Hölldobler B (2005). "Eusociality: origin and consequences". Proc. Natl. Acad. Sci. U.S.A. 102 (38): 13367–71
  207. 207,0 207,1 Gavrilets S (2003). "Perspective: models of speciation: what have we learned in 40 years?". Evolution 57 (10): 2197–215
  208. 208,0 208,1 208,2 de Queiroz K (2005). "Ernst Mayr and the modern concept of species". Proc. Natl. Acad. Sci. U.S.A. 102 (Suppl 1): 6600–7
  209. 209,0 209,1 Ereshefsky, M. (1992). "Eliminative pluralism". Philosophy of Science 59 (4): 671–690
  210. Mayr, E. (1942). Systematics and the Origin of Species, Columbia Univ. Press ISBN 978-0-231-05449-2
  211. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009). "The bacterial species challenge: making sense of genetic and ecological diversity". Science 323 (5915): 741–6
  212. Short RV (1975). "The contribution of the mule to scientific thought". J. Reprod. Fertil. Suppl. (23): 359–64
  213. Gross B, Rieseberg L (2005). "The ecological genetics of homoploid hybrid speciation". J. Hered. 96 (3): 241–52
  214. Burke JM, Arnold ML (2001). "Genetics and the fitness of hybrids". Annu. Rev. Genet. 35 (1): 31–52
  215. Vrijenhoek RC (2006). "Polyploid hybrids: multiple origins of a treefrog species". Curr. Biol. 16 (7): R245–7
  216. Rice, W.R. (1993). "Laboratory experiments on speciation: what have we learned in 40 years". Evolution 47 (6): 1637–1653
    *Jiggins CD, Bridle JR (2004). "Speciation in the apple maggot fly: a blend of vintages?". Trends Ecol. Evol. (Amst.) 19 (3): 111–4
    *Boxhorn, J (1995). Observed Instances of Speciation. TalkOrigins Archive pristupljeno 26. prosinca 2008.
    *Weinberg JR, Starczak VR, Jorg, D (1992). "Evidence for Rapid Speciation Following a Founder Event in the Laboratory". Evolution 46 (4): 1214–20
  217. Herrel, A.; Huyghe, K.; Vanhooydonck, B.; Backeljau, T.; Breugelmans, K.; Grbac, I.; Van Damme, R.; Irschick, D.J. (2008). "Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource". Proceedings of the National Academy of Sciences 105 (12): 4792–5
  218. Losos, J.B. Warhelt, K.I. Schoener, T.W. (1997). "Adaptive differentiation following experimental island colonization in Anolis lizards". Nature 387 (6628): 70–3
  219. Hoskin CJ, Higgle M, McDonald KR, Moritz C (2005). "Reinforcement drives rapid allopatric speciation". Nature 437 (7063): 1353–356
  220. Templeton AR (1. travnja 1980.). "The theory of speciation via the founder principle". Genetics 94 (4): 1011–38
  221. Antonovics J (2006). "Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary". Heredity 97 (1): 33–7
  222. Nosil P, Crespi B, Gries R, Gries G (2007). "Natural selection and divergence in mate preference during speciation". Genetica 129 (3): 309–27
  223. Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJr (2006). "Sympatric speciation in palms on an oceanic island". Nature 441 (7090): 210–3
    *Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006). "Sympatric speciation in Nicaraguan crater lake cichlid fish". Nature 439 (7077): 719–23
  224. Gavrilets S (2006). "The Maynard Smith model of sympatric speciation". J. Theor. Biol. 239 (2): 172–82
  225. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009). "The frequency of polyploid speciation in vascular plants". Proc. Natl. Acad. Sci. U.S.A. 106 (33): 13875–9
  226. Hegarty Mf, Hiscock SJ (2008). "Genomic clues to the evolutionary success of polyploid plants". Current Biology 18 (10): 435–44
  227. Jakobsson M, Hagenblad J, Tavaré S (2006). "A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers". Mol. Biol. Evol. 23 (6): 1217–31
  228. Säll T, Jakobsson M, Lind-Halldén C, Halldén C (2003). "Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica". J. Evol. Biol. 16 (5): 1019–29
  229. Bomblies K, Weigel D (2007). "Arabidopsis-a model genus for speciation". Current Opinion in Genetics & Development 17 (6): 500–4
  230. Sémon M, Wolfe KH (2007). "Consequences of genome duplication". Current Opinion in Genetics & Development 17 (6): 505–12
  231. Niles Eldredge and Stephen Jay Gould, 1972. "Punctuated equilibria: an alternative to phyletic gradualism" In T.J.M. Schopf, ed., Models in Paleobiology. San Francisco: Freeman Cooper. pp. 82–115. Reprinted in N. Eldredge Time frames. Princeton: Princeton Univ. Press. 1985
  232. Gould SJ (1994). "Tempo and mode in the macroevolutionary reconstruction of Darwinism". Proc. Natl. Acad. Sci. U.S.A. 91 (15): 6764–71
  233. Benton MJ (1995). "Diversification and extinction in the history of life". Science 268 (5207): 52–8
  234. Raup DM (1986). "Biological extinction in Earth history". Science 231 (4745): 1528–33
  235. Avise JC, Hubbell SP, Ayala FJ. (2008). "In the light of evolution II: Biodiversity and extinction". Proc. Natl. Acad. Sci. U.S.A. 105 (Suppl 1): 11453–7
  236. 236,0 236,1 236,2 Raup DM (1994). "The role of extinction in evolution". Proc. Natl. Acad. Sci. U.S.A. 91 (15): 6758–63
  237. Novacek MJ, Cleland EE (2001). "The current biodiversity extinction event: scenarios for mitigation and recovery". Proc. Natl. Acad. Sci. U.S.A. 98 (10): 5466–70
  238. Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006). "Human impacts on the rates of recent, present and future bird extinctions". Proc. Natl. Acad. Sci. U.S.A. 103 (29): 10941–6
    *Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004). "Assessing the causes of late Pleistocene extinctions on the continents". Science 306 (5693): 70–5
  239. Lewis OT (2006). "Climate change, species-area curves and the extinction crisis". Philosophical Transactions of the Royal Society B 361 (1465): 163–71
  240. Jablonski D (2001). "Lessons from the past: evolutionary impacts of mass extinctions". Proc. Natl. Acad. Sci. U.S.A. 98 (10): 5393–8
  241. Doolittle, W. Ford (veljače 2000). "Uprooting the tree of life". Scientific American 282 (6): 90–95
  242. Peretó J (2005). "Controversies on the origin of life". Int. Microbiol. 8 (1): 23–31
  243. Joyce GF (2002). "The antiquity of RNA-based evolution". Nature 418 (6894): 214–21
  244. Trevors JT, Psenner R (2001). "From self-assembly of life to present-day bacteria: a possible role for nanocells". FEMS Microbiol. Rev. 25 (5): 573–82
  245. Theobald, DL. (2010). "A formal test of the theory of universal common ancestry". Nature 465 (7295): 219–22
  246. Bapteste E, Walsh DA (2005). "Does the 'Ring of Life' ring true?". Trends Microbiol. 13 (6): 256–61
  247. Darwin, Charles (1859). On the Origin of Species, 1st, John Murray ISBN 0-8014-1319-2
  248. Doolittle WF, Bapteste E (2007). "Pattern pluralism and the Tree of Life hypothesis". Proc. Natl. Acad. Sci. U.S.A. 104 (7): 2043–9
  249. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005). "The net of life: reconstructing the microbial phylogenetic network". Genome Res. 15 (7): 954–9
  250. Jablonski D (1999). "The future of the fossil record". Science 284 (5423): 2114–16
  251. Mason SF (1984). "Origins of biomolecular handedness". Nature 311 (5981): 19–23
  252. Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002). "Genome trees and the tree of life". Trends Genet. 18 (9): 472–79
  253. Varki A, Altheide TK (2005). "Comparing the human and chimpanzee genomes: searching for needles in a haystack". Genome Res. 15 (12): 1746–58
  254. 254,0 254,1 Cavalier-Smith T (2006). "Cell evolution and Earth history: stasis and revolution". Philosophical Transactions of the Royal Society B 361 (1470): 969–1006
  255. Schopf J (2006). "Fossil evidence of Archaean life". Philosophical Transactions of the Royal Society B 361 (1470): 869–85
    *Altermann W, Kazmierczak J (2003). "Archean microfossils: a reappraisal of early life on Earth". Res Microbiol 154 (9): 611–17
  256. Schopf J (1994). "Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic". Proc Natl Acad Sci U S A 91 (15): 6735–42
  257. Poole A, Penny D (2007). "Evaluating hypotheses for the origin of eukaryotes". BioEssays 29 (1): 74–84
  258. Dyall S, Brown M, Johnson P (2004). "Ancient invasions: from endosymbionts to organelles". Science 304 (5668): 253–57
  259. Martin W (2005). "The missing link between hydrogenosomes and mitochondria". Trends Microbiol. 13 (10): 457–59
  260. Lang B, Gray M, Burger G (1999). "Mitochondrial genome evolution and the origin of eukaryotes". Annu Rev Genet 33 (1): 351–97
    *McFadden G (1999). "Endosymbiosis and evolution of the plant cell". Current Opinion in Plant Biology 2 (6): 513–19
  261. DeLong E, Pace N (2001). "Environmental diversity of bacteria and archaea". Syst Biol 50 (4): 470–8
  262. Kaiser D (2001). "Building a multicellular organism". Annu. Rev. Genet. 35 (1): 103–23
  263. Valentine JW, Jablonski D, Erwin DH (1. ožujka 1999.). "Fossils, molecules and embryos: new perspectives on the Cambrian explosion". Development 126 (5): 851–9
  264. Ohno S (1997). "The reason for as well as the consequence of the Cambrian explosion in animal evolution". J. Mol. Evol. 1 (S1): S23–7
    *Valentine J, Jablonski D (2003). "Morphological and developmental macroevolution: a paleontological perspective". Int. J. Dev. Biol. 47 (7–8): 517–22
  265. Waters ER (2003). "Molecular adaptation and the origin of land plants". Mol. Phylogenet. Evol. 29 (3): 456–63
  266. Mayhew PJ (2007). "Why are there so many insect species? Perspectives from fossils and phylogenies". Biol Rev Camb Philos Soc 82 (3): 425–54
  267. Carroll, Robert L. (svibnja 2007). "The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians". Zool J Linn Soc 150 (s1): 1–140
  268. Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007). "Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary". Nature 447 (7147): 1003–1006
  269. Witmer LM (2011). "Palaeontology: An icon knocked from its perch". Nature 475 (7357): 458–459
  270. Bull JJ, Wichman HA (2001). "Applied evolution". Annu Rev Ecol Syst 32 (1): 183–217
  271. Doebley JF, Gaut BS, Smith BD (2006). "The molecular genetics of crop domestication". Cell 127 (7): 1309–21
  272. Jäckel C, Kast P, Hilvert D (2008). "Protein design by directed evolution". Annu Rev Biophys 37 (1): 153–73
  273. Maher B. (2009). "Evolution: Biology's next top model?". Nature 458 (7239): 695–8
  274. Borowsky R (2008). "Restoring sight in blind cavefish". Curr. Biol. 18 (1): R23–4
  275. Gross JB, Borowsky R, Tabin CJ (2009). "A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus". PLoS Genet. 5 (1): e1000326
  276. Merlo, LM, Pepper, JW; Reid, BJ; Maley, CC (1. prosinca 2006.). "Cancer as an evolutionary and ecological process.". Nature reviews. Cancer 6 (12): 924–35
  277. Pan, D, Xue, W; Zhang, W; Liu, H; Yao, X (1. listopada 2012.). "Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: a computational study.". Biochimica et Biophysica Acta 1820 (10): 1526–34
  278. Woodford, N, Ellington, MJ (1. siječnja 2007.). "The emergence of antibiotic resistance by mutation.". Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 13 (1): 5–18
  279. Labbé, P, Berticat, C; Berthomieu, A; Unal, S; Bernard, C; Weill, M; Lenormand, T (1. studenoga 2007.). "Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens.". PLoS genetics 3 (11): e205
  280. NEVE, P (listopada 2007). "Challenges for herbicide resistance evolution and management: 50�years after Harper". Weed Research 47 (5): 365–369
  281. Rodríguez-Rojas, A, Rodríguez-Beltrán, J; Couce, A; Blázquez, J (1. kolovoza 2013.). "Antibiotics and antibiotic resistance: a bitter fight against evolution.". International journal of medical microbiology : IJMM 303 (6–7): 293–7
  282. Schenk, MF, Szendro, IG; Krug, J; de Visser, JA (1. lipnja 2012.). "Quantifying the adaptive potential of an antibiotic resistance enzyme.". PLoS genetics 8 (6): e1002783
  283. Read, AF, Lynch, PA; Thomas, MB (2009 Apr 7). "How to make evolution-proof insecticides for malaria control.". PLoS Biology 7 (4): e1000058
  284. Fraser AS (1958). "Monte Carlo analyses of genetic models". Nature 181 (4603): 208–9
  285. Rechenberg, Ingo (1973). Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) (German), Fromman-Holzboog
  286. Holland, John H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press ISBN 0-262-58111-6
  287. Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press ISBN 0-262-11170-5
  288. Jamshidi M (2003). "Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms". Philosophical Transactions of the Royal Society A 361 (1809): 1781–808
  289. Browne, Janet (2003). Charles Darwin: The Power of Place, str. 376–379, London: Pimlico ISBN 0-7126-6837-3
  290. For an overview of the philosophical, religious and cosmological controversies, see: Dennett, D (1995). Darwin's Dangerous Idea: Evolution and the Meanings of Life, Simon & Schuster ISBN 978-0-684-82471-0
    *For the scientific and social reception of evolution in the 19th and early 20th centuries, see: Johnston, Ian C.. History of Science: Origins of Evolutionary Theory. And Still We Evolve. Liberal Studies Department, Malaspina University College pristupljeno 24. svibnja 2007.
    *Bowler, PJ (2003). Evolution: The History of an Idea, Third Edition, Completely Revised and Expanded, University of California Press ISBN 978-0-520-23693-6
    *Zuckerkandl E (2006). "Intelligent design and biological complexity". Gene 385: 2–18
  291. Ross, M.R. (2005). "Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism". Journal of Geoscience Education 53 (3) pristupljeno 28. travnja 2008.
  292. Hameed, Salman (12. prosinca 2008.). "Science and Religion: Bracing for Islamic Creationism". Science 322 (5908): 1637–1638 pristupljeno 2009
  293. Bowler, Peter J. (2003). Evolution:The History of an Idea, University of California Press ISBN 0-520-23693-9
  294. Spergel D. N. (2006). "Science communication. Public acceptance of evolution". Science 313 (5788): 765–66
  295. Spergel, D. N. (2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters". The Astrophysical Journal Supplement Series 148 (1): 175–94
  296. Wilde SA, Valley JW, Peck WH, Graham CM (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature 409 (6817): 175–78
  297. Branch, Glenn (ožujka 2007). "Understanding Creationism after Kitzmiller". BioScience 57 (3): 278–284

Preporučena literatura[uredi VE | uredi]

uvodna literatura

povijest evolucijske misli

napredna literatura

Vanjske poveznice[uredi VE | uredi]

Natuknica evolucija može se pronaći i na wikipedijskim sestrinskim projektima:
pretraži Wječnik definicije i prijevodi u Wječniku
pretraži Commons mediji u Commonsu
pretraži Wikicitat citati u Wikicitatu
pretraži Wikiizvor izvorni tekstovi u Wikiizvoru
pretraži Wikiknjige udžbenici u Wikiknjigama
pretraži Wikiučilište učila u Wikiučilištu.
opće informacije
povijest evolucijske misli
eksperimenti u vezi s procesom biološke evolucije
predavanja na mreži