George Hevesy

Izvor: Wikipedija
(Preusmjereno s George de Hevesy)
Prijeđi na navigaciju Prijeđi na pretraživanje
George Hevesy
George de Hevesy.jpg
Rođenje 1. kolovoza 1885.
Mjesto rođenja Budimpešta, Mađarska
Smrt 5. srpnja 1966.
Freiburg, Njemačka
Narodnost Mađar
Polje Kemija
Institucija Sveučilište u Ghentu,
Sveučilište u Budimpešti,
Sveučilište u Kopenhagenu,
Savezna tehnička visoka škola (ETH Zurich)
Sveučilište u Freiburgu
Sveučilište u Manchesteru
Alma mater Sveučilište u Freiburgu
Poznat po Otkriće hafnija
Izotopno obilježavanje
Pokus s alfa-česticama i zlatnim listićem
Istaknute nagrade Nobelova nagrada za kemiju (1943.)
Copleyeva medalja (1949.)

George Hevesy, pravo ime György Hevesi (Budimpešta, Mađarska, 1. kolovoza 1885. – Freiburg im Breisgau, Njemačka, 5. srpnja 1966.), mađarski kemičar. Profesor u Freiburgu i Stockholmu, suradnik N. Bohra u Kopenhagenu. S Friedrichom Panethom (1887. – 1958.) razvio tehniku radioizotopnih indikatora (izotopno obilježavanje) i time bitno pridonio razumijevanju fizioloških procesa, za što je 1943. dobio Nobelovu nagradu za kemiju. Bavio se i kemijskom izolacijom radija. Na poticaj N. Bohra s Dirkom Costerom (1889. – 1950.) otkrio element hafnij (1923.). [1]

Doprinosi[uredi VE | uredi]

Hafnij[uredi VE | uredi]

Vista-xmag.pngPodrobniji članak o temi: Hafnij

Hafnij (prema novolat. Hafnia, imenu za Kopenhagen; simbol Hf), kemijski element (atomski broj 72, relativna atomska masa 178,49), rastezljivi metal srebrne boje i sjaja, velike gustoće (13,31 g/cm³) i visokoga tališta (približno 2 230 °C), u spojevima četverovalentan. Velike je otpornosti prema koroziji i izvrsnih mehaničkih svojstava, postojanih i na visokim temperaturama. U prirodi je rijedak, dolazi samo u mineralima cirkonija, s kojim čini kemijski najsličniji par elemenata u periodnom sustavu elemenata. Primjenjuje se u nuklearnoj tehnici kao usporivač neutrona ili moderator u nuklearnim reaktorima, jer sposobnošću apsorpcije neutrona bitno premašuje većinu drugih metala. Hafnij se kao sastojak slitina prijelaznih metala koristi se u raketnoj, zrakoplovnoj, alatnoj i rasvjetnoj tehnici. Slitina tantalov hafnijev karbid s talištem oko 4 215 °C jedna je od temperaturno najotpornijih slitina uopće. Spojevi hafnija po kemijskim se svojstvima u potpunosti podudaraju sa spojevima cirkonija, pa se od njih vrlo teško razdvajaju. [2]

Pokus s alfa-česticama i zlatnim listićem[uredi VE | uredi]

Vista-xmag.pngPodrobniji članak o temi: Pokus s alfa-česticama i zlatnim listićem

Pokus s alfa-česticama i zlatnim listićem je bio jedan od najznačajnih pokusa u nuklearnoj fizici, jer je to bio prvi dokaz da u atomu postoji atomska jezgra. Rutherford okuplja plodan tim istraživača, među kojima su H. Geiger, Ernest Marsden, G. Hevesy, H. Moseley, a nekoliko je godina dio tima bio i N. Bohr.

Ključni se pokus za to otkriće dogodio 1909. kada su znanstvenici vrlo tanku zlatnu foliju izložili djelovanju alfa-čestica. Thompsonov model atoma je predviđao će alfa-čestice proći kroz tanki metalni film i raspršiti se pod određenim malim kutovima. No, na veliko je iznenađenje istraživačkoga tima ustanovljeno raspršenje i pod velikim kutovima, a neke su se helijeve jezgre od metalne folije odbile potpuno unatrag. Rutherford je to usporedio s vjerojatnošću da list papira odbije topovsku kuglu. Rezultat je pokusa vodio prema novom modelu atoma, koji je Rutherford predložio 1911.: atom se sastoji od središnjega naboja okruženoga sferičnom raspodjelom naboja suprotnoga predznaka. U početku se pretpostavljalo da su i elektroni građevne čestice atomske jezgre, pa je u modelu za atom dušika rednoga broja 7 bilo pretpostavljeno da u jezgri ima 21 česticu, i to 14 protona i 7 elektrona, a u elektronskom omotaču još 7 elektrona. [3]

Primjena izotopa[uredi VE | uredi]

Vista-xmag.pngPodrobniji članak o temi: Izotop

Primjena izotopa temelji se na njihovim različitim masama i, za radioaktivne izotope, na zračenju koje emitiraju. Kao snažni izvori zračenja izotopi se u radijacijskoj tehnologiji primjenjuju za sterilizaciju i mikrobiološku dekontaminaciju. Značajna je primjena izotopa za izotopno obilježavanje (markiranje), za što su posebno pogodni radioaktivni izotopi, jer se zračenje lako otkriva i mjeri s visokom osjetljivošću. Obilježavanje se sastoji u ugrađivanju takvih izotopa (obilježivač) u fizičke, kemijske i biološke strukture, gdje oni, sudjelujući u reakcijama i procesima, omogućuju praćenje puta pojedinih atoma ili molekula, a time i reakcijskoga mehanizma. [4]

Izvori[uredi VE | uredi]

  1. Hevesy, George, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2019.
  2. hafnij, [2] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2019.
  3. [3] "Uvod u nuklearnu energetiku", Prof. dr. sc. Danilo Feretić, 2011.
  4. Velimir Kruz: "Tehnička fizika za tehničke škole", "Školska knjiga" Zagreb, 1969.