Bernoullijeva jednadžba

Izvor: Wikipedija
Skoči na: orijentacija, traži

Bernoullijeva jednadžba prikazuje odnos između brzine, tlaka i gustoće tekućine u kretanju. Ona kaže da je u slučaju stabilnog strujanja nestlačive idealne tekućine, bez trenja, ukupna energija tekućine jednaka duž svih prereza; porastom brzine tekućine pada njen hidrostatski tlak i obratno. Zbroj hidrostatskog tlaka i hidrodinamičkog tlaka u vodoravnom strujanju daje ukupan tlak koji je konstantan u svim prerezima cijevi. Drugim riječima, Bernoullijeva jednadžba predstavlja zakon očuvanja energije koji nam u slučaju stacionarnog strujanja tekućine govori da Za vrijeme stacionarnog strujanja jedinica mase tekućine (njen diferencijalni dio) ima konstantnu energiju duž cijele strujne cijevi.


Odnosno Bernouiiljeva jednadžba govori o konstantnosti:

Objašnjenje Bernoullieve jednadžbe[uredi VE | uredi]

Bernoulli equation.jpg

Kroz cijevi različitog promjera protječe tekućina (slika). Okomito na smjer strujanja postavljene su pijezometarske cjevčice (1) koje pokazuju veličinu statičkog tlaka mjerenog u pravcu okomito na smjer strujanja, kako bi se izbjegao utjecaj tlaka uslijed gibanja tekućine. Pitotove cijevčice sa savijenim uronjenim krajevima u smjeru strujanja (2) po zakonu o spojenim posudama imaju istu razinu kao i posuda (3). Pijezometarska i brzinska visina mogu se odrediti pomoću pijezometarske i Pitotove cijevi. Suma tih visina je konstantna i jednaka H bez obzira koju strujnu cijev promatramo.


Na užim mjestima statički tlak je manji, a na širim veći. U ravnomjernom strujanju tekućine kroz cijev brzina u užim dijelovima je veća iz čega proizlazi da je na mjestima manje brzine strujanja statički tlak veći, a na mjestima veće brzine statički tlak manji.

Osnovne i izvedene mjerne jedinice koje se koristi B. jednadžba[uredi VE | uredi]

ρGustoća -
S - presjek predstavlja površinu poprečnog presjeka ili Ploština - .
p - statički tlak - (Pa)
v - brzina - (m/s)
mmasa tekućine - (kg)
R - mehanički rad - (J)
V - volumen mase tekućine -
  • Bernoullieva jednadžba koristi SI sustav jedinica.


    • geodetska visina odnosno visina težišta poprečnog presjeka u odnosu na neku vodoravnu ravninu u
    • pijezometarska ili tlačna visina odnosno visina pijezometarskog tlaka koju pokazuje visina stupca tekućine u pijezometarskoj cijevi u
    • je brzinska visina u , a brzina predstavlja brzinu koju bi tijelo imalo kada bi bilo u slobodnom padu.
    • Ukupan zbroj energija daje Bernoullijevu jednadžbu

Ulaskom u uži dio cijevi, presjeka i statičkog tlaka tekućina dobije veću brzinu . Masa tekućine m ima u širem dijelu cijevi kinetičku energiju:

a kad uđe u uži dio kinetičku energiju:

Povećanje kinetičke energije posljedica je mehaničkog rada R koji je nastao radi razlike tlakova () pri gibanju mase m tekućine iz šireg dijela cijevi u uži na putu ΔS:

R = () ΔS
R= () V , gdje je V volumen mase tekućine.

Taj je rad jednak povećanju kinetičke energije:

() V = -

Dijeljenjem gornje jednakosti s volumenom, znajući da je gustoća ρ = dobivamo Bernoullijevu jednađbu:

+ = + = + = konst.

Izrazi , + i + prikazuju tlak koji je nastao uslijed strujanja tekućine i zove se dinamički tlak.

Oblik Bernoullijeve jednadžbe za idealnu tekućinu[uredi VE | uredi]

Osnovne pretpostavke pod kojim vrijedi ova jednadžba su:
  1. tekućina je idealna - nestlačiva tekućina, linija energije je konstantna duž presjeka
  2. Stacionarno strujanje

    • predstavlja hidrodinamički tlak ili ukupnu specifičnu energiju u .

Izvod Bernoullieve jednadžbe preko zakona održanja količine gibanja[uredi VE | uredi]

Bernoullijeva jednadžba je prvi puta izvedena 1738. godine primjenom zakona održanja količine gibanja.

Osnovne pretpostavke pod kojima vrijedi ovaj izvod su:

  1. fiktivna cijev ili proračun za konačni element neke cijevi,
  2. Stacionarno strujanje ili postupno promjenjivo strujanje.


Izvod Bernoullieve jednadžbe preko Eulerovog integrala[uredi VE | uredi]

Eulorove diferencijalne jednadžbe kretanja tekućine - implicitni oblik


... ... ...(1E)
... ... ...(2E)
... ... ...(3E)

- nema općeg rješenja jer imamo 4 nepoznanice. Rješenje je moguće samo ako definiramo pretpostavku koja će eliminirati nepoznanicu viška.

Osnovna pretpostavka:
matematičke transformacije - (1E) množimo s dx, (2E) množimo s dy, (3E) množimo s dz i sumiramo dobivene jednadžbe.


pa dobijemo jednadžbu:


možemo derivirati




dakle, sada imamo ovaj oblik jednadžbe



  • ako imamo strujnu cijev u kojoj dijeluje samo gravitacija u normalnom koordinatnom sustavu. Možemo pojednostaviti ovako;



I konačno Eulerov integral koji predstavlja izvod bernoullieve jednadžbe:

Oblik Bernoullijeve jednadžbe za realnu tekućinu[uredi VE | uredi]

    • je dio specifične energije utrošen na svladavanje hidrodinamičkih otpora strujanju kapljevine. Izražava se u .

Coriolisov koeficijent[uredi VE | uredi]

Ili koeficijent kinetičke energije . On pokazuje odnos stvarne kinetičke energije mase fluida koji protječe poprečnim presjekom u jedinici vremena i kinetičke energije određene iz uvjeta da su brzine u svim točkama presjeka jednake (srednja brzina). Koeficijent kinetičke energije je bezdimenzionalna jedinica.

Koeficijent kinetičke energije najčešće ima slijedeće vrijednosti:
    • kod strujanja u cijevima
    • kod strujanja u otvorenim vodotocima
    • vrijednost možemo računati ovom formulom:

- postavlja se uvjet da je

Praktična primjena Bernoullieve jednadžbe[uredi VE | uredi]

Primjer cijevi pod tlakom[uredi VE | uredi]

cijev pod tlakom

znamo: .

gubitak tlaka predstavlja razliku pijezometarskih visina u presjecima (1) i (2). Za slučaj da je cijev vodoravna vrijedi:



Primjer za otvoreni vodotok[uredi VE | uredi]

otvoreni vodotok


znamo: ako je strujanje jednoliko






  • atmosferski tlak djeluje na površini vodotoka
  • u pijezometrima se voda podiže do razine vode u vodotoku
linija vodnog lica je pijezometarska linija







Primjer za Venturijev vodomjer[uredi VE | uredi]

Zaključak[uredi VE | uredi]

gdje je hidrostatski tlak, dinamički tlak, a ukupni tlak, konstantan u cijelom vodoravnom cjevovodu bez obzira na presjek.


  • Bernoullijev zakon ili Bernoullijeva jednadžba služi za proračun brzine, tlaka ili gubitaka kod tečenja tekućine kroz otvorene i zatvorene vodotoke za idealnu i realnu tekućinu. Pošto se radi o tekućinama ,tj. fluidima, Bernoullieva jednadžba služi kao temeljna postavka za objašnjavanje uzgona aeroprofila.